Switch to: References

Add citations

You must login to add citations.
  1. In Honour of Kirsti Andersen.Jesper Lützen & Henrik Kragh Sørensen - 2010 - Centaurus 52 (1):1-3.
    During the first half of the nineteenth century, mathematical analysis underwent a transition from a predominantly formula-centred practice to a more concept-centred one. Central to this development was the reorientation of analysis originating in Augustin-Louis Cauchy's (1789–1857) treatment of infinite series in his Cours d’analyse. In this work, Cauchy set out to rigorize analysis, thereby critically examining and reproving central analytical results. One of Cauchy's first and most ardent followers was the Norwegian Niels Henrik Abel (1802–1829) who vowed to shed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ambiguities of Fundamental Concepts in Mathematical Analysis During the Mid-nineteenth Century.Kajsa Bråting - 2012 - Foundations of Science 17 (4):301-320.
    In this paper we consider the major development of mathematical analysis during the mid-nineteenth century. On the basis of Jahnke’s (Hist Math 20(3):265–284, 1993 ) distinction between considering mathematics as an empirical science based on time and space and considering mathematics as a purely conceptual science we discuss the Swedish nineteenth century mathematician E.G. Björling’s general view of real- and complexvalued functions. We argue that Björling had a tendency to sometimes consider mathematical objects in a naturalistic way. One example is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms.Tiziana Bascelli, Piotr Błaszczyk, Alexandre Borovik, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, David M. Schaps & David Sherry - 2018 - Foundations of Science 23 (2):267-296.
    Cauchy's sum theorem is a prototype of what is today a basic result on the convergence of a series of functions in undergraduate analysis. We seek to interpret Cauchy’s proof, and discuss the related epistemological questions involved in comparing distinct interpretive paradigms. Cauchy’s proof is often interpreted in the modern framework of a Weierstrassian paradigm. We analyze Cauchy’s proof closely and show that it finds closer proxies in a different modern framework.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cauchy's Continuum.Karin U. Katz & Mikhail G. Katz - 2011 - Perspectives on Science 19 (4):426-452.
    One of the most influential scientific treatises in Cauchy's era was J.-L. Lagrange's Mécanique Analytique, the second edition of which came out in 1811, when Cauchy was barely out of his teens. Lagrange opens his treatise with an unequivocal endorsement of infinitesimals. Referring to the system of infinitesimal calculus, Lagrange writes:Lorsqu'on a bien conçu l'esprit de ce système, et qu'on s'est convaincu de l'exactitude de ses résultats par la méthode géométrique des premières et dernières raisons, ou par la méthode analytique (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Current Bibliography of the History of Science and Its Cultural Influences 2002.Stephen P. Weldon - 2002 - Isis 93:1-237.
    Download  
     
    Export citation  
     
    Bookmark  
  • A new look at E.G. Björling and the Cauchy sum theorem.Kajsa Bråting - 2007 - Archive for History of Exact Sciences 61 (5):519-535.
    We give a new account of Björling’s contribution to uniform convergence in connection with Cauchy’s theorem on the continuity of an infinite series. Moreover, we give a complete translation from Swedish into English of Björling’s 1846 proof of the theorem. Our intention is also to discuss Björling’s convergence conditions in view of Grattan-Guinness’ distinction between history and heritage. In connection to Björling’s convergence theory we discuss the interpretation of Cauchy’s infinitesimals.
    Download  
     
    Export citation  
     
    Bookmark   12 citations