Switch to: References

Add citations

You must login to add citations.
  1. Should the use of adaptive machine learning systems in medicine be classified as research?Robert Sparrow, Joshua Hatherley, Justin Oakley & Chris Bain - 2024 - American Journal of Bioethics 24 (10):58-69.
    A novel advantage of the use of machine learning (ML) systems in medicine is their potential to continue learning from new data after implementation in clinical practice. To date, considerations of the ethical questions raised by the design and use of adaptive machine learning systems in medicine have, for the most part, been confined to discussion of the so-called “update problem,” which concerns how regulators should approach systems whose performance and parameters continue to change even after they have received regulatory (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Limits of trust in medical AI.Joshua James Hatherley - 2020 - Journal of Medical Ethics 46 (7):478-481.
    Artificial intelligence (AI) is expected to revolutionise the practice of medicine. Recent advancements in the field of deep learning have demonstrated success in variety of clinical tasks: detecting diabetic retinopathy from images, predicting hospital readmissions, aiding in the discovery of new drugs, etc. AI’s progress in medicine, however, has led to concerns regarding the potential effects of this technology on relationships of trust in clinical practice. In this paper, I will argue that there is merit to these concerns, since AI (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • The virtues of interpretable medical AI.Joshua Hatherley, Robert Sparrow & Mark Howard - 2024 - Cambridge Quarterly of Healthcare Ethics 33 (3):323-332.
    Artificial intelligence (AI) systems have demonstrated impressive performance across a variety of clinical tasks. However, notoriously, sometimes these systems are 'black boxes'. The initial response in the literature was a demand for 'explainable AI'. However, recently, several authors have suggested that making AI more explainable or 'interpretable' is likely to be at the cost of the accuracy of these systems and that prioritising interpretability in medical AI may constitute a 'lethal prejudice'. In this paper, we defend the value of interpretability (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Implementing Ethics in Healthcare AI-Based Applications: A Scoping Review.Robyn Clay-Williams, Elizabeth Austin & Magali Goirand - 2021 - Science and Engineering Ethics 27 (5):1-53.
    A number of Artificial Intelligence (AI) ethics frameworks have been published in the last 6 years in response to the growing concerns posed by the adoption of AI in different sectors, including healthcare. While there is a strong culture of medical ethics in healthcare applications, AI-based Healthcare Applications (AIHA) are challenging the existing ethics and regulatory frameworks. This scoping review explores how ethics frameworks have been implemented in AIHA, how these implementations have been evaluated and whether they have been successful. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Epistemic Role of AI Decision Support Systems: Neither Superiors, Nor Inferiors, Nor Peers.Rand Hirmiz - 2024 - Philosophy and Technology 37 (127):1-20.
    Despite the importance of discussions over the epistemic role that artificially intelligent decision support systems ought to play, there is currently a lack of these discussions in both the AI literature and the epistemology literature. My goal in this paper is to rectify this by proposing an account of the epistemic role of AI decision support systems in medicine and discussing what this epistemic role means with regard to how these systems ought to be utilized. In particular, I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The FHJ debate: Will artificial intelligence replace clinical decision-making within our lifetimes?Joshua Hatherley, Anne Kinderlerer, Jens Christian Bjerring, Lauritz Munch & Lynsey Threlfall - 2024 - Future Healthcare Journal 11 (3):100178.
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards a Taxonomy of AI Risks in the Health Domain.Delaram Golpayegani, Joshua Hovsha, Leon Rossmaier, Rana Saniei & Jana Misic - 2022 - 2022 Fourth International Conference on Transdisciplinary Ai (Transai).
    The adoption of AI in the health sector has its share of benefits and harms to various stakeholder groups and entities. There are critical risks involved in using AI systems in the health domain; risks that can have severe, irreversible, and life-changing impacts on people’s lives. With the development of innovative AI-based applications in the medical and healthcare sectors, new types of risks emerge. To benefit from novel AI applications in this domain, the risks need to be managed in order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Data over dialogue: Why artificial intelligence is unlikely to humanise medicine.Joshua Hatherley - 2024 - Dissertation, Monash University
    Recently, a growing number of experts in artificial intelligence (AI) and medicine have be-gun to suggest that the use of AI systems, particularly machine learning (ML) systems, is likely to humanise the practice of medicine by substantially improving the quality of clinician-patient relationships. In this thesis, however, I argue that medical ML systems are more likely to negatively impact these relationships than to improve them. In particular, I argue that the use of medical ML systems is likely to comprise the (...)
    Download  
     
    Export citation  
     
    Bookmark