Switch to: References

Add citations

You must login to add citations.
  1. The contours of evolution: In defence of Darwin's tree of life paradigm.Peter T. S. van der Gulik, Wouter D. Hoff & Dave Speijer - 2024 - Bioessays 46 (5):2400012.
    Both the concept of a Darwinian tree of life (TOL) and the possibility of its accurate reconstruction have been much criticized. Criticisms mostly revolve around the extensive occurrence of lateral gene transfer (LGT), instances of uptake of complete organisms to become organelles (with the associated subsequent gene transfer to the nucleus), as well as the implications of more subtle aspects of the biological species concept. Here we argue that none of these criticisms are sufficient to abandon the valuable TOL concept (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Eukaryotic cellular intricacies shape mitochondrial proteomic complexity.Michael Hammond, Richard G. Dorrell, Dave Speijer & Julius Lukeš - 2022 - Bioessays 44 (5):2100258.
    Mitochondria have been fundamental to the eco‐physiological success of eukaryotes since the last eukaryotic common ancestor (LECA). They contribute essential functions to eukaryotic cells, above and beyond classical respiration. Mitochondria interact with, and complement, metabolic pathways occurring in other organelles, notably diversifying the chloroplast metabolism of photosynthetic organisms. Here, we integrate existing literature to investigate how mitochondrial metabolism varies across the landscape of eukaryotic evolution. We illustrate the mitochondrial remodelling and proteomic changes undergone in conjunction with major evolutionary transitions. We (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Molecular characteristics of the multi‐functional FAO enzyme ACAD9 illustrate the importance of FADH 2 /NADH ratios for mitochondrial ROS formation. [REVIEW]Dave Speijer - 2022 - Bioessays 44 (8):2200056.
    A decade ago I postulated that ROS formation in mitochondria was influenced by different FADH2/NADH (F/N) ratios of catabolic substrates. Thus, fatty acid oxidation (FAO) would give higher ROS formation than glucose oxidation. Both the emergence of peroxisomes and neurons not using FAO, could be explained thus. ROS formation in NADH:ubiquinone oxidoreductase (Complex I) comes about by reverse electron transport (RET) due to high QH2 levels, and scarcity of its electron‐acceptor (Q) during FAO. The then new, unexpected, finding of an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Eukaryotes without oxygen? A review of “Mitochondria and anaerobic energy metabolism in eukaryotes” by William F. Martin, Aloysius G. M. Tielens and Marek Mentel. [REVIEW]Dave Speijer - 2021 - Bioessays 43 (7):2100105.
    Download  
     
    Export citation  
     
    Bookmark