Switch to: References

Add citations

You must login to add citations.
  1. On effective topological spaces.Dieter Spreen - 1998 - Journal of Symbolic Logic 63 (1):185-221.
    Starting with D. Scott's work on the mathematical foundations of programming language semantics, interest in topology has grown up in theoretical computer science, under the slogan `open sets are semidecidable properties'. But whereas on effectively given Scott domains all such properties are also open, this is no longer true in general. In this paper a characterization of effectively given topological spaces is presented that says which semidecidable sets are open. This result has important consequences. Not only follows the classical Rice-Shapiro (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Can partial indexings be totalized?Dieter Spreen - 2001 - Journal of Symbolic Logic 66 (3):1157-1185.
    In examples like the total recursive functions or the computable real numbers the canonical indexings are only partial maps. It is even impossible in these cases to find an equivalent total numbering. We consider effectively given topological T 0 -spaces and study the problem in which cases the canonical numberings of such spaces can be totalized, i.e., have an equivalent total indexing. Moreover, we show under very natural assumptions that such spaces can effectively and effectively homeomorphically be embedded into a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A note on partial numberings.Serikzhan Badaev & Dieter Spreen - 2005 - Mathematical Logic Quarterly 51 (2):129-136.
    The different behaviour of total and partial numberings with respect to the reducibility preorder is investigated. Partial numberings appear quite naturally in computability studies for topological spaces. The degrees of partial numberings form a distributive lattice which in the case of an infinite numbered set is neither complete nor contains a least element. Friedberg numberings are no longer minimal in this situation. Indeed, there is an infinite descending chain of non-equivalent Friedberg numberings below every given numbering, as well as an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation