Switch to: References

Citations of:

Revisiting Semilattice Semantics

In Ivo Düntsch & Edwin Mares (eds.), Alasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs. Springer Verlag. pp. 243-259 (2021)

Add citations

You must login to add citations.
  1. Multiset-Multiset Frames.Takuro Onishi - 2024 - Journal of Philosophical Logic 53 (5):1241-1264.
    This paper presents the notion of multiset-multiset frame (mm-frame for short), a frame equipped with a relation between (finite) multisets over the set of points which satisfies the condition called compositionality. This notion is an extension of Restall and Standefer’s multiset frame, a frame that relates a multiset to a single point. While multiset frames serve as frames for the positive fragments of relevant logics RW and R, mm-frames are for the full RW and R with negation. We show this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The relevance logic of Boolean groups.Yale Weiss - 2023 - Logic Journal of the IGPL 31 (1):96-114.
    In this article, I consider the positive logic of Boolean groups (i.e. Abelian groups where every non-identity element has order 2), where these are taken as frames for an operational semantics à la Urquhart. I call this logic BG. It is shown that the logic over the smallest nontrivial Boolean group, taken as a frame, is identical to the positive fragment of a quasi-relevance logic that was developed by Robles and Méndez (an extension of this result where negation is included (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Collection Frames for Distributive Substructural Logics.Greg Restall & Shawn Standefer - 2023 - Review of Symbolic Logic 16 (4):1120-1157.
    We present a new frame semantics for positive relevant and substructural propositional logics. This frame semantics is both a generalisation of Routley–Meyer ternary frames and a simplification of them. The key innovation of this semantics is the use of a single accessibility relation to relate collections of points to points. Different logics are modeled by varying the kinds of collections used: they can be sets, multisets, lists or trees. We show that collection frames on trees are sound and complete for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What is a Relevant Connective?Shawn Standefer - 2022 - Journal of Philosophical Logic 51 (4):919-950.
    There appears to be few, if any, limits on what sorts of logical connectives can be added to a given logic. One source of potential limitations is the motivating ideology associated with a logic. While extraneous to the logic, the motivating ideology is often important for the development of formal and philosophical work on that logic, as is the case with intuitionistic logic. One family of logics for which the philosophical ideology is important is the family of relevant logics. In (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations