Switch to: References

Add citations

You must login to add citations.
  1. The Everett Interpretation: Structure.Simon Saunders - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    The Everett interpretation of quantum mechanics divides naturally into two parts: first, the interpretation of the structure of the quantum state, in terms of branching, and second, the interpretation of this branching structure in terms of probability. This is the first of two reviews of the Everett interpretation, and focuses on structure, with particular attention to the role of decoherence theory. Written in terms of the quantum histories formalism, decoherence theory just is the theory of branching structure, in Everett's sense.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Yes, More Decoherence: A Reply to Critics.Elise M. Crull - 2017 - Foundations of Physics 47 (11):1428-1463.
    Recently I published an article in this journal entitled “Less interpretation and more decoherence in quantum gravity and inflationary cosmology” :1019–1045, 2015). This article generated responses from three pairs of authors: Vassallo and Esfeld :1533–1536, 2015), Okon and Sudarsky :852–879, 2016) and Fortin and Lombardi. In what follows, I reply to the criticisms raised by these authors.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Exploring Philosophical Implications of Quantum Decoherence.Elise M. Crull - 2013 - Philosophy Compass 8 (9):875-885.
    Quantum decoherence is receiving a great deal of attention today not only in theoretical and experimental physics but also in branches of science as diverse as molecular biology, biochemistry, and even neuropsychology. It is no surprise that it is also beginning to appear in various philosophical debates concerning the fundamental structure of the world. The purpose of this article is primarily to acquaint non-specialists with quantum decoherence and clarify related concepts, and secondly to sketch its possible implications – independent of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Decoherence and the Copenhagen cut.Scott Tanona - 2013 - Synthese 190 (16):3625-3649.
    While it is widely agreed that decoherence will not solve the measurement problem, decoherence has been used to explain the “emergence of classicality” and to eliminate the need for a Copenhagen edict that some systems simply have to be treated as classical via a quantum-classical “cut”. I argue that decoherence still relies on such a cut. Decoherence accounts derive classicality only in virtue of their incompleteness, by omission of part of the entangled system of which the classical-appearing subsystem is a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Decoherence: The View from the History and the Philosophy of Science.Amit Hagar - 2012 - Phil. Trans. Royal Soc. London A 375 (1975).
    We present a brief history of decoherence, from its roots in the foundations of classical statistical mechanics, to the current spin bath models in condensed matter physics. We analyze the philosophical import of the subject matter in three different foundational problems, and find that, contrary to the received view, decoherence is less instrumental to their solutions than it is commonly believed. What makes decoherence more philosophically interesting, we argue, are the methodological issues it draws attention to, and the question of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Emergence in physics.Andrew Wayne & Michal Arciszewski - 2009 - Philosophy Compass 4 (5):846-858.
    This paper begins by tracing interest in emergence in physics to the work of condensed matter physicist Philip Anderson. It provides a selective introduction to contemporary philosophical approaches to emergence. It surveys two exciting areas of current work that give good reason to re-evaluate our views about emergence in physics. One area focuses on physical systems wherein fundamental theories appear to break down. The other area is the quantum-to-classical transition, where some have claimed that a complete explanation of the behaviors (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Bootstrapping Time Dilation Decoherence.Cisco Gooding & William G. Unruh - 2015 - Foundations of Physics 45 (10):1166-1178.
    We present a general relativistic model of a spherical shell of matter with a perfect fluid on its surface coupled to an internal oscillator, which generalizes a model recently introduced by the authors to construct a self-gravitating interferometer. The internal oscillator evolution is defined with respect to the local proper time of the shell, allowing the oscillator to serve as a local clock that ticks differently depending on the shell’s position and momentum. A Hamiltonian reduction is performed on the system, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reconstructing reality: Environment-induced decoherence, the measurement problem, and the emergence of definiteness in quantum mechanics.Hanneke Janssen - unknown
    This work is a critique of the program of "environment-induced decoherence" as advocated by Zurek, Zeh and Joos, among others. In particular, the alleged relevance of decoherence for a solution of the "measurement problem" is subjected to a detailed philosophical analysis. In the first chapter, an attempt is made to unravel what exactly this "measurement problem" amounts to for the decoherence theorists. The second chapter reviews the standard decoherence literature. The third chapter starts with a brief discussion of the philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations