Switch to: References

Add citations

You must login to add citations.
  1. σ-Continuity and related forcings.Marcin Sabok - 2009 - Archive for Mathematical Logic 48 (5):449-464.
    The Steprāns forcing notion arises as quotient of the algebra of Borel sets modulo the ideal of σ-continuity of a certain Borel not σ-continuous function. We give a characterization of this forcing in the language of trees and use this characterization to establish such properties of the forcing as fusion and continuous reading of names. Although the latter property is usually implied by the fact that the associated ideal is generated by closed sets, we show that it is not the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Four and more.Ilijas Farah & Jindřich Zapletal - 2006 - Annals of Pure and Applied Logic 140 (1):3-39.
    We isolate several large classes of definable proper forcings and show how they include many partial orderings used in practice.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Decomposing Borel functions and structure at finite levels of the Baire hierarchy.Janusz Pawlikowski & Marcin Sabok - 2012 - Annals of Pure and Applied Logic 163 (12):1748-1764.
    We prove that if f is a partial Borel function from one Polish space to another, then either f can be decomposed into countably many partial continuous functions, or else f contains the countable infinite power of a bijection that maps a convergent sequence together with its limit onto a discrete space. This is a generalization of a dichotomy discovered by Solecki for Baire class 1 functions. As an application, we provide a characterization of functions which are countable unions of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Forcing with quotients.Michael Hrušák & Jindřich Zapletal - 2008 - Archive for Mathematical Logic 47 (7-8):719-739.
    We study an extensive connection between quotient forcings of Borel subsets of Polish spaces modulo a σ-ideal and quotient forcings of subsets of countable sets modulo an ideal.
    Download  
     
    Export citation  
     
    Bookmark   18 citations