Switch to: References

Add citations

You must login to add citations.
  1. Responding to the Watson-Sterkenburg debate on clustering algorithms and natural kinds.Warmhold Jan Thomas Mollema - manuscript
    In Philosophy and Technology 36, David Watson discusses the epistemological and metaphysical implications of unsupervised machine learning (ML) algorithms. Watson is sympathetic to the epistemological comparison of unsupervised clustering, abstraction and generative algorithms to human cognition and sceptical about ML’s mechanisms having ontological implications. His epistemological commitments are that we learn to identify “natural kinds through clustering algorithms”, “essential properties via abstraction algorithms”, and “unrealized possibilities via generative models” “or something very much like them.” The same issue contains a commentary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is Unsupervised Clustering Somehow Truer?Anders Søgaard - 2024 - Minds and Machines 34 (4).
    Scientists increasingly approach the world through machine learning techniques, but philosophers of science often question their epistemic status. Some philosophers have argued that the use of unsupervised clustering algorithms is more justified than the use of supervised classification, because supervised classification is more biased, and because (parametric) simplicity plays a different and more interesting role in unsupervised clustering. I call these arguments the No-Bias Argument and the Simplicity-Truth Argument. I show how both arguments are fallacious and how, on the contrary, (...)
    Download  
     
    Export citation  
     
    Bookmark