Switch to: References

Add citations

You must login to add citations.
  1. Reverse mathematics and well-ordering principles: A pilot study.Bahareh Afshari & Michael Rathjen - 2009 - Annals of Pure and Applied Logic 160 (3):231-237.
    The larger project broached here is to look at the generally sentence “if X is well-ordered then f is well-ordered”, where f is a standard proof-theoretic function from ordinals to ordinals. It has turned out that a statement of this form is often equivalent to the existence of countable coded ω-models for a particular theory Tf whose consistency can be proved by means of a cut elimination theorem in infinitary logic which crucially involves the function f. To illustrate this theme, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Duality, non-standard elements, and dynamic properties of r.e. sets.V. Yu Shavrukov - 2016 - Annals of Pure and Applied Logic 167 (10):939-981.
    Download  
     
    Export citation  
     
    Bookmark  
  • An incompleteness theorem for β n -models.Carl Mummert & Stephen G. Simpson - 2004 - Journal of Symbolic Logic 69 (2):612-616.
    Let n be a positive integer. By a $\beta_{n}-model$ we mean an $\omega-model$ which is elementary with respect to $\sigma_{n}^{1}$ formulas. We prove the following $\beta_{n}-model$ version of $G\ddot{o}del's$ Second Incompleteness Theorem. For any recursively axiomatized theory S in the language of second order arithmetic, if there exists a $\beta_{n}-model$ of S, then there exists a $\beta_{n}-model$ of S + "there is no countable $\beta_{n}-model$ of S". We also prove a $\beta_{n}-model$ version of $L\ddot{o}b's$ Theorem. As a corollary, we obtain (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From hierarchies to well-foundedness.Dandolo Flumini & Kentaro Sato - 2014 - Archive for Mathematical Logic 53 (7-8):855-863.
    We highlight that the connection of well-foundedness and recursive definitions is more than just convenience. While the consequences of making well-foundedness a sufficient condition for the existence of hierarchies have been extensively studied, we point out that well-foundedness is a necessary condition for the existence of hierarchies e.g. that even in an intuitionistic setting α⊢wfwhereα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${_\alpha \vdash \mathsf{wf}\, {\rm where}\, _\alpha}$$\end{document} stands for the iteration of Π10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations