Switch to: References

Citations of:

Models and Inferences in Science

Cham: Springer (1st ed. 2016)

Add citations

You must login to add citations.
  1. On the heuristic power of mathematical representations.Emiliano Ippoliti - 2022 - Synthese 200 (5):1-28.
    I argue that mathematical representations can have heuristic power since their construction can be ampliative. To this end, I examine how a representation introduces elements and properties into the represented object that it does not contain at the beginning of its construction, and how it guides the manipulations of the represented object in ways that restructure its components by gradually adding new pieces of information to produce a hypothesis in order to solve a problem.In addition, I defend an ‘inferential’ approach (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Heuristics and Inferential Microstructures: The Path to Quaternions.Emiliano Ippoliti - 2019 - Foundations of Science 24 (3):411-425.
    I investigate the construction of the mathematical concept of quaternion from a methodological and heuristic viewpoint to examine what we can learn from it for the study of the advancement of mathematical knowledge. I will look, in particular, at the inferential microstructures that shape this construction, that is, the study of both the very first, ampliative inferential steps, and their tentative outcomes—i.e. small ‘structures’ such as provisional entities and relations. I discuss how this paradigmatic case study supports the recent approaches (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Scientific Discovery as a Topic for Philosophy of Science: Some Personal Reflections.Tom Nickles - 2020 - Topoi 39 (4):841-845.
    This is a brief, personal retrospective on developments in the treatment of scientific discovery by philosophers, since about 1970.
    Download  
     
    Export citation  
     
    Bookmark  
  • Manufacturing a Mathematical Group: A Study in Heuristics.Emiliano Ippoliti - 2020 - Topoi 39 (4):963-971.
    I examine the way a relevant conceptual novelty in mathematics, that is, the notion of group, has been constructed in order to show the kinds of heuristic reasoning that enabled its manufacturing. To this end, I examine salient aspects of the works of Lagrange, Cauchy, Galois and Cayley. In more detail, I examine the seminal idea resulting from Lagrange’s heuristics and how Cauchy, Galois and Cayley develop it. This analysis shows us how new mathematical entities are generated, and also how (...)
    Download  
     
    Export citation  
     
    Bookmark