Switch to: References

Citations of:

Mathematical rigor in physics

In Michael Detlefsen (ed.), Proof and Knowledge in Mathematics. New York: Routledge. pp. 158 (1992)

Add citations

You must login to add citations.
  1. Where in the (world wide) web of belief is the law of non-contradiction?Jack Arnold & Stewart Shapiro - 2007 - Noûs 41 (2):276–297.
    It is sometimes said that there are two, competing versions of W. V. O. Quine’s unrelenting empiricism, perhaps divided according to temporal periods of his career. According to one, logic is exempt from, or lies outside the scope of, the attack on the analytic-synthetic distinction. This logic-friendly Quine holds that logical truths and, presumably, logical inferences are analytic in the traditional sense. Logical truths are knowable a priori, and, importantly, they are incorrigible, and so immune from revision. The other, radical (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Is mathematical rigor necessary in physics?Kevin Davey - 2003 - British Journal for the Philosophy of Science 54 (3):439-463.
    Many arguments found in the physics literature involve concepts that are not well-defined by the usual standards of mathematics. I argue that physicists are entitled to employ such concepts without rigorously defining them so long as they restrict the sorts of mathematical arguments in which these concepts are involved. Restrictions of this sort allow the physicist to ignore calculations involving these concepts that might lead to contradictory results. I argue that such restrictions need not be ad hoc, but can sometimes (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Kabbalistic philosophy of science?Sarah J. Kattau - 2001 - Metascience 10 (1):22-31.
    Download  
     
    Export citation  
     
    Bookmark  
  • Applying pure mathematics.Anthony Peressini - 1999 - Philosophy of Science 66 (3):13.
    Much of the current thought concerning mathematical ontology and epistemology follows Quine and Putnam in looking to the indispensable application of mathematics in science. A standard assumption of the indispensability approach is some version of confirmational holism, i.e., that only "sufficiently large" sets of beliefs "face the tribunal of experience." In this paper I develop and defend a distinction between a pure mathematical theory and a mathematized scientific theory in which it is applied. This distinction allows for the possibility that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (2 other versions)Representing the World with Inconsistent Mathematics.Colin McCullough-Benner - 2019 - British Journal for the Philosophy of Science 71 (4):1331-1358.
    According to standard accounts of mathematical representations of physical phenomena, positing structure-preserving mappings between a physical target system and the structure picked out by a mathematical theory is essential to such representations. In this paper, I argue that these accounts fail to give a satisfactory explanation of scientific representations that make use of inconsistent mathematical theories and present an alternative, robustly inferential account of mathematical representation that provides not just a better explanation of applications of inconsistent mathematics, but also a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Using Mathematics to Explain a Scientific Theory.Michèle Friend & Daniele Molinini - 2016 - Philosophia Mathematica 24 (2):185-213.
    We answer three questions: 1. Can we give a wholly mathematical explanation of a physical phenomenon? 2. Can we give a wholly mathematical explanation for a whole physical theory? 3. What is gained or lost in giving a wholly, or partially, mathematical explanation of a phenomenon or a scientific theory? To answer these questions we look at a project developed by Hajnal Andréka, Judit Madarász, István Németi and Gergely Székely. They, together with collaborators, present special relativity theory in a three-sorted (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Intended and Unintended Mathematics: The Case of the Lagrange Multipliers.Daniele Molinini - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (1):93-113.
    We can distinguish between two different ways in which mathematics is applied in science: when mathematics is introduced and developed in the context of a particular scientific application; when mathematics is used in the context of a particular scientific application but it has been developed independently from that application. Nevertheless, there might also exist intermediate cases in which mathematics is developed independently from an application but it is nonetheless introduced in the context of that particular application. In this paper I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation