Switch to: References

Add citations

You must login to add citations.
  1. ON THE EXPRESSIVE POWER OF THE LOGICS L(Q α n1,…, n m).Andreas Rapp - 1984 - Mathematical Logic Quarterly 30 (1-6):11-20.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Henkin Quantifier and Real Closed Fields.John R. Cowles - 1981 - Mathematical Logic Quarterly 27 (31-35):549-555.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Definability hierarchies of general quantifiers.Lauri Hella - 1989 - Annals of Pure and Applied Logic 43 (3):235.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The ordered field of real numbers and logics with Malitz quantifiers.Andreas Rapp - 1985 - Journal of Symbolic Logic 50 (2):380-389.
    Let ℜ = (R, + R , ...) be the ordered field of real numbers. It will be shown that the L(Q n 1 ∣ n ≥ 1)-theory of ℜ is decidable, where Q n 1 denotes the Malitz quantifier of order n in the ℵ 1 -interpretation.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)European Summer Meeting of the Association for Symbolic Logic.W. Obserschelp, B. Schinzel, W. Thomas & M. M. Richter - 1985 - Journal of Symbolic Logic 50 (1):259-283.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the expressibility hierarchy of Magidor-Malitz quantifiers.Matatyahu Rubin & Saharon Shelah - 1983 - Journal of Symbolic Logic 48 (3):542-557.
    We prove that the logics of Magidor-Malitz and their generalization by Rubin are distinct even for PC classes. Let $M \models Q^nx_1 \cdots x_n \varphi(x_1 \cdots x_n)$ mean that there is an uncountable subset A of |M| such that for every $a_1, \ldots, a_n \in A, M \models \varphi\lbrack a_1, \ldots, a_n\rbrack$ . Theorem 1.1 (Shelah) $(\diamond_{\aleph_1})$ . For every n ∈ ω the class $K_{n + 1} = \{\langle A, R\rangle \mid \langle A, R\rangle \models \neg Q^{n + 1} (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations