Switch to: References

Add citations

You must login to add citations.
  1. Geometrical Semantics for Spatial Prepositions.Colleen Crangle & Patrick Suppes - 1989 - Midwest Studies in Philosophy 14 (1):399-422.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Geometrical Characterization of the Twin Paradox and its Variants.Gergely Székely - 2010 - Studia Logica 95 (1-2):161 - 182.
    The aim of this paper is to provide a logic-based conceptual analysis of the twin paradox (TwP) theorem within a first-order logic framework. A geometrical characterization of TwP and its variants is given. It is shown that TwP is not logically equivalent to the assumption of the slowing down of moving clocks, and the lack of TwP is not logically equivalent to the Newtonian assumption of absolute time. The logical connection between TwP and a symmetry axiom of special relativity is (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Structural representation and surrogative reasoning.Chris Swoyer - 1991 - Synthese 87 (3):449 - 508.
    It is argued that a number of important, and seemingly disparate, types of representation are species of a single relation, here called structural representation, that can be described in detail and studied in a way that is of considerable philosophical interest. A structural representation depends on the existence of a common structure between a representation and that which it represents, and it is important because it allows us to reason directly about the representation in order to draw conclusions about the (...)
    Download  
     
    Export citation  
     
    Bookmark   186 citations  
  • On the general theory of meaningful representation.Brent Mundy - 1986 - Synthese 67 (3):391 - 437.
    The numerical representations of measurement, geometry and kinematics are here subsumed under a general theory of representation. The standard theories of meaningfulness of representational propositions in these three areas are shown to be special cases of two theories of meaningfulness for arbitrary representational propositions: the theories based on unstructured and on structured representation respectively. The foundations of the standard theories of meaningfulness are critically analyzed and two basic assumptions are isolated which do not seem to have received adequate justification: the (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Embedding and uniqueness in relational theories of space.Brent Mundy - 1986 - Synthese 67 (3):383 - 390.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the space-time ontology of physical theories.Kenneth L. Manders - 1982 - Philosophy of Science 49 (4):575-590.
    In the correspondence with Clarke, Leibniz proposes to construe physical theory in terms of physical (spatio-temporal) relations between physical objects, thus avoiding incorporation of infinite totalities of abstract entities (such as Newtonian space) in physical ontology. It has generally been felt that this proposal cannot be carried out. I demonstrate an equivalence between formulations postulating space-time as an infinite totality and formulations allowing only possible spatio-temporal relations of physical (point-) objects. The resulting rigorous formulations of physical theory may be seen (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Spatial ontology and physical modalities.Hugh M. Lacey & Elizabeth Anderson - 1980 - Philosophical Studies 38 (3):261 - 285.
    Most relational theories assert both that spatial discourse is reducible to talk about physical objects and their spatial relations, and that the relation of congruence derives from a non-metrical relation which intervals bear or possibly bear to measuring instruments. We have shown that there are serious logical difficulties involved in maintaining both these positions and the thesis of the continuity of space. We have also shown that Grünbaum's motivating argument for the reduction of congruence is unsound, and, moreover, that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Linear structures, causal sets and topology.Hudetz Laurenz - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):294-308.
    Causal set theory and the theory of linear structures share some of their main motivations. In view of that, I raise and answer the question how these two theories are related to each other and to standard topology. I show that causal set theory can be embedded into Maudlin’s more general framework and I characterise what Maudlin’s topological concepts boil down to when applied to discrete linear structures that correspond to causal sets. Moreover, I show that all topological aspects of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Johan van Benthem on Logic and Information Dynamics.Alexandru Baltag & Sonja Smets (eds.) - 2014 - Cham, Switzerland: Springer International Publishing.
    This book illustrates the program of Logical-Informational Dynamics. Rational agents exploit the information available in the world in delicate ways, adopt a wide range of epistemic attitudes, and in that process, constantly change the world itself. Logical-Informational Dynamics is about logical systems putting such activities at center stage, focusing on the events by which we acquire information and change attitudes. Its contributions show many current logics of information and change at work, often in multi-agent settings where social behavior is essential, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Computational Learning Semantics for Inductive Empirical Knowledge.Kevin T. Kelly - 2014 - In Alexandru Baltag & Sonja Smets (eds.), Johan van Benthem on Logic and Information Dynamics. Cham, Switzerland: Springer International Publishing. pp. 289-337.
    This chapter presents a new semantics for inductive empirical knowledge. The epistemic agent is represented concretely as a learner who processes new inputs through time and who forms new beliefs from those inputs by means of a concrete, computable learning program. The agent’s belief state is represented hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit and as having converged to true belief from the present time onward. Familiar topics are re-examined within (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations