Switch to: References

Add citations

You must login to add citations.
  1. Small probability space formulation of Bell's theorem.Tomasz Placek & Marton Gomori - unknown
    A small probability space representation of quantum mechanical probabilities is defined as a collection of Kolmogorovian probability spaces, each of which is associated with a context of a maximal set of compatible measurements, that portrays quantum probabilities as Kolmogorovian probabilities of classical events. Bell's theorem is stated and analyzed in terms of the small probability space formalism.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Can the ontological models framework accommodate Bohmian mechanics?Benjamin Feintzeig - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (1):59-67.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Pluralists about Pluralism? Versions of Explanatory Pluralism in Psychiatry.Jeroen Van Bouwel - 2014 - In Thomas Uebel (ed.), New Directions in the Philosophy of Science. Cham: Springer. pp. 105-119.
    In this contribution, I comment on Raffaella Campaner’s defense of explanatory pluralism in psychiatry (in this volume). In her paper, Campaner focuses primarily on explanatory pluralism in contrast to explanatory reductionism. Furthermore, she distinguishes between pluralists who consider pluralism to be a temporary state on the one hand and pluralists who consider it to be a persisting state on the other hand. I suggest that it would be helpful to distinguish more than those two versions of pluralism – different understandings (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The concept of probability in physics: an analytic version of von Mises’ interpretation.Louis Vervoort - manuscript
    In the following we will investigate whether von Mises’ frequency interpretation of probability can be modified to make it philosophically acceptable. We will reject certain elements of von Mises’ theory, but retain others. In the interpretation we propose we do not use von Mises’ often criticized ‘infinite collectives’ but we retain two essential claims of his interpretation, stating that probability can only be defined for events that can be repeated in similar conditions, and that exhibit frequency stabilization. The central idea (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Classicality and Bell’s theorem.Márton Gömöri & Carl Hoefer - 2023 - European Journal for Philosophy of Science 13 (3):1-24.
    A widespread view among physicists is that Bell’s theorem rests on an implicit assumption of “classicality,” in addition to locality. According to this understanding, the violation of Bell’s inequalities poses no challenge to locality, but simply reinforces the fact that quantum mechanics is not classical. The paper provides a critical analysis of this view. First we characterize the notion of classicality in probabilistic terms. We argue that classicality thus construed has nothing to do with the validity of classical physics, nor (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Very Idea of Distant Correlations.Márton Gömöri - 2020 - Foundations of Physics 50 (6):530-554.
    Contemporary debate over laws of nature centers around Humean supervenience, the thesis that everything supervenes on the distribution of non-nomic facts. The key ingredient of this thesis is the idea that nomic-like concepts—law, chance, causation, etc.—are expressible in terms of the regularities of non-nomic facts. Inherent to this idea is the tacit conviction that regularities, “constant conjunctions” of non-nomic facts do supervene on the distribution of non-nomic facts. This paper raises a challenge for this conviction. It will be pointed out (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bell inequality and common causal explanation in algebraic quantum field theory.Gábor Hofer-Szabó & Péter Vecsernyés - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):404-416.
    Bell inequalities, understood as constraints between classical conditional probabilities, can be derived from a set of assumptions representing a common causal explanation of classical correlations. A similar derivation, however, is not known for Bell inequalities in algebraic quantum field theories establishing constraints for the expectation of specific linear combinations of projections in a quantum state. In the paper we address the question as to whether a ‘common causal justification’ of these non-classical Bell inequalities is possible. We will show that although (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Limits of Common Cause Approach to EPR Correlation.Katsuaki Higashi - 2008 - Foundations of Physics 38 (7):591-609.
    It is often argued that no local common cause models of EPR correlation exist. However, Szabó and Rédei pointed out that such arguments have the tacit assumption that plural correlations have the same common causes. Furthermore, Szabó showed that for EPR correlation a local common cause model in his sense exists. One of his requirements is that common cause events are statistically independent of apparatus settings on each side. However, as Szabó knows, to meet this requirement does not entail that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (2 other versions)The Einstein-Podolsky-Rosen Argument and the Bell Inequalities.László E. Szabó - 2007 - Internet Encyclopedia of Philosophy.
    In 1935, Einstein, Podolsky, and Rosen (EPR) published an important paper in which they claimed that the whole formalism of quantum mechanics together with what they called a “Reality Criterion” imply that quantum mechanics cannot be complete. That is, there must exist some elements of reality that are not described by quantum mechanics. They concluded that there must be a more complete description of physical reality involving some hidden variables that can characterize the state of affairs in the world in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)The Einstein-podolsky-Rosen argument and the bell inequalities.László E. Szabó - unknown
    In 1935 Einstein, Podolsky, and Rosen (EPR) published an important paper in which they claimed that the whole formalism of quantum mechanics together with what they called ``Reality Criterion'' imply that quantum mechanics cannot be complete. That is, there must exist some elements of reality that are not described by quantum mechanics. There must be, they concluded, a more complete description of physical reality behind quantum mechanics. There must be a state, a hidden variable, characterizing the state of affairs in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation