Switch to: References

Add citations

You must login to add citations.
  1. The physics of implementing logic: Landauer's principle and the multiple-computations theorem.Meir Hemmo & Orly Shenker - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:90-105.
    This paper makes a novel linkage between the multiple-computations theorem in philosophy of mind and Landauer’s principle in physics. The multiple-computations theorem implies that certain physical systems implement simultaneously more than one computation. Landauer’s principle implies that the physical implementation of “logically irreversible” functions is accompanied by minimal entropy increase. We show that the multiple-computations theorem is incompatible with, or at least challenges, the universal validity of Landauer’s principle. To this end we provide accounts of both ideas in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why nonreductive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Meaning, Truth, and Physics.Laszlo E. Szabo - unknown
    A physical theory is a partially interpreted axiomatic formal system, where L is a formal language with some logical, mathematical and physical axioms, and with some derivation rules, and the semantics S is a relationship between the formulas of L and some states of affairs in the physical world. In our ordinary discourse, the formal system L is regarded as an abstract object or structure, the semantics S as something which involves the mental/conceptual realm. This view is of course incompatible (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Intrinsic, Extrinsic, and the Constitutive A Priori.László E. Szabó - 2020 - Foundations of Physics 50 (6):555-567.
    On the basis of what I call physico-formalist philosophy of mathematics, I will develop an amended account of the Kantian–Reichenbachian conception of constitutive a priori. It will be shown that the features attributed to a real object are not possessed by the object as a “thing-in-itself”; they require a physical theory by means of which these features are constituted. It will be seen that the existence of such a physical theory implies that a physical object can possess a property only (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Intrinsic, Extrinsic, and the Constitutive A Priori.László E. Szabó - 2019 - Foundations of Physics:1-13.
    On the basis of what I call physico-formalist philosophy of mathematics, I will develop an amended account of the Kantian–Reichenbachian conception of constitutive a priori. It will be shown that the features attributed to a real object are not possessed by the object as a “thing-in-itself”; they require a physical theory by means of which these features are constituted. It will be seen that the existence of such a physical theory implies that a physical object can possess a property only (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Physicalism Without the Idols of Mathematics.László E. Szabó - 2023 - Foundations of Science:1-20.
    I will argue that the ontological doctrine of physicalism inevitably entails the denial that there is anything conceptual in logic and mathematics. The elements of a formal system, even if they are tagged by suggestive names, are merely meaningless parts of a physically existing machinery, which have nothing to do with concepts, because they have nothing to do with the actual things. The only situation in which they can become meaning-carriers is when they are involved in a physical theory. But (...)
    Download  
     
    Export citation  
     
    Bookmark