Switch to: References

Add citations

You must login to add citations.
  1. The Definition of Mach’s Principle.Julian Barbour - 2010 - Foundations of Physics 40 (9-10):1263-1284.
    Two definitions of Mach’s principle are proposed. Both are related to gauge theory, are universal in scope and amount to formulations of causality that take into account the relational nature of position, time, and size. One of them leads directly to general relativity and may have relevance to the problem of creating a quantum theory of gravity.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Handedness, parity violation, and the reality of space.Oliver Pooley - 2002 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press. pp. 250--280.
    In the first part of this paper a relational account of incongruent counterparts is defended against an argument due to Kant. I then consider a more recent attack on such an account, due to John Earman, which alleges that the relationalist cannot account for the lawlike left--right asymmetry manifested in parity-violating phenomena. I review Hoefer's, Huggett's and Saunders' responses to Earman's argument and argue that, while a relationalist account of parity-violating laws is possible, it comes at the cost of non-locality.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Deducing Newton’s second law from relativity principles: A forgotten history.Olivier Darrigol - 2020 - Archive for History of Exact Sciences 74 (1):1-43.
    In French mechanical treatises of the nineteenth century, Newton’s second law of motion was frequently derived from a relativity principle. The origin of this trend is found in ingenious arguments by Huygens and Laplace, with intermediate contributions by Euler and d’Alembert. The derivations initially relied on Galilean relativity and impulsive forces. After Bélanger’s Cours de mécanique of 1847, they employed continuous forces and a stronger relativity with respect to any commonly impressed motion. The name “principle of relative motions” and the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Rethinking Newton’s Principia.Simon Saunders - 2013 - Philosophy of Science 80 (1):22-48.
    It is widely accepted that the notion of an inertial frame is central to Newtonian mechanics and that the correct space-time structure underlying Newton’s methods in Principia is neo-Newtonian or Galilean space-time. I argue to the contrary that inertial frames are not needed in Newton’s theory of motion, and that the right space-time structure for Newton’s Principia requires the notion of parallelism of spatial directions at different times and nothing more. Only relative motions are definable in this framework, never absolute (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations