Switch to: References

Add citations

You must login to add citations.
  1. The formalization of interpretability.Albert Visser - 1991 - Studia Logica 50 (1):81 - 105.
    This paper contains a careful derivation of principles of Interpretability Logic valid in extensions of I0+1.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • An Inside View of Exp; or, The Closed Fragment of the Provability Logic of IΔ0+ Ω1 with a Propositional Constant for.Albert Visser - 1992 - Journal of Symbolic Logic 57 (1):131-165.
    In this paper I give a characterization of the closed fragment of the provability logic of $I \triangle_0 + \mathrm{EXP}$ with a propositional constant for $\mathrm{EXP}$. In three appendices many details on arithmetization are provided.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Exponentiation and second-order bounded arithmetic.Jan Krajíček - 1990 - Annals of Pure and Applied Logic 48 (3):261-276.
    V i 2 ⊢A iff for some term t :S i 2 ⊢ “2 i exists→ A”, a bounded first-order formula, i ≥1. V i 2 is not Π b 1 -conservative over S i 2 . Any model of V 2 not satisfying Exp satisfies the collection scheme BΣ 0 1 . V 1 3 is not Π b 1 -conservative over S 2.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A small reflection principle for bounded arithmetic.Rineke Verbrugge & Albert Visser - 1994 - Journal of Symbolic Logic 59 (3):785-812.
    We investigate the theory IΔ 0 + Ω 1 and strengthen [Bu86. Theorem 8.6] to the following: if NP ≠ co-NP. then Σ-completeness for witness comparison formulas is not provable in bounded arithmetic. i.e. $I\delta_0 + \Omega_1 + \nvdash \forall b \forall c (\exists a(\operatorname{Prf}(a.c) \wedge \forall = \leq a \neg \operatorname{Prf} (z.b))\\ \rightarrow \operatorname{Prov} (\ulcorner \exists a(\operatorname{Prf}(a. \bar{c}) \wedge \forall z \leq a \neg \operatorname{Prf}(z.\bar{b})) \urcorner)).$ Next we study a "small reflection principle" in bounded arithmetic. We prove that for (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • S 3 i andV 2 i.Gaisi Takeuti - 1990 - Archive for Mathematical Logic 29 (3):149-169.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A second order version of S2i and U21.Gaisi Takeuti - 1991 - Journal of Symbolic Logic 56 (3):1038-1063.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gödel sentences of bounded arithmetic.Gaisi Takeuti - 2000 - Journal of Symbolic Logic 65 (3):1338-1346.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Annual meeting of the association for symbolic logic, Los Angeles, 1989.Richard A. Shore - 1990 - Journal of Symbolic Logic 55 (1):372-386.
    Download  
     
    Export citation  
     
    Bookmark  
  • Preservation theorems and restricted consistency statements in bounded arithmetic.Arnold Beckmann - 2004 - Annals of Pure and Applied Logic 126 (1-3):255-280.
    We define and study a new restricted consistency notion RCon ∗ for bounded arithmetic theories T 2 j . It is the strongest ∀ Π 1 b -statement over S 2 1 provable in T 2 j , similar to Con in Krajíček and Pudlák, 29) or RCon in Krajı́ček and Takeuti 107). The advantage of our notion over the others is that RCon ∗ can directly be used to construct models of T 2 j . We apply this by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation