Switch to: References

Add citations

You must login to add citations.
  1. On model-theoretic tree properties.Artem Chernikov & Nicholas Ramsey - 2016 - Journal of Mathematical Logic 16 (2):1650009.
    We study model theoretic tree properties and their associated cardinal invariants. In particular, we obtain a quantitative refinement of Shelah’s theorem for countable theories, show that [Formula: see text] is always witnessed by a formula in a single variable and that weak [Formula: see text] is equivalent to [Formula: see text]. Besides, we give a characterization of [Formula: see text] via a version of independent amalgamation of types and apply this criterion to verify that some examples in the literature are (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Tree indiscernibilities, revisited.Byunghan Kim, Hyeung-Joon Kim & Lynn Scow - 2014 - Archive for Mathematical Logic 53 (1-2):211-232.
    We give definitions that distinguish between two notions of indiscernibility for a set {aη∣η∈ω>ω}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{a_{\eta} \mid \eta \in ^{\omega>}\omega\}}$$\end{document} that saw original use in Shelah [Classification theory and the number of non-isomorphic models. North-Holland, Amsterdam, 1990], which we name s- and str−indiscernibility. Using these definitions and detailed proofs, we prove s- and str-modeling theorems and give applications of these theorems. In particular, we verify a step in the argument that TP is equivalent (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Indiscernibles, EM-Types, and Ramsey Classes of Trees.Lynn Scow - 2015 - Notre Dame Journal of Formal Logic 56 (3):429-447.
    The author has previously shown that for a certain class of structures $\mathcal {I}$, $\mathcal {I}$-indexed indiscernible sets have the modeling property just in case the age of $\mathcal {I}$ is a Ramsey class. We expand this known class of structures from ordered structures in a finite relational language to ordered, locally finite structures which isolate quantifier-free types by way of quantifier-free formulas. This result is applied to give new proofs that certain classes of trees are Ramsey. To aid this (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Dense codense predicates and the NTP 2.Alexander Berenstein & Hyeung-Joon Kim - 2016 - Mathematical Logic Quarterly 62 (1-2):16-24.
    We show that if T is any geometric theory having the NTP2 then the corresponding theories of lovely pairs of models of T and of H‐structures associated to T also have the NTP2. We also prove that if T is strong then the same two expansions of T are also strong.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the antichain tree property.JinHoo Ahn, Joonhee Kim & Junguk Lee - 2022 - Journal of Mathematical Logic 23 (2).
    In this paper, we investigate a new model theoretical tree property (TP), called the antichain tree property (ATP). We develop combinatorial techniques for ATP. First, we show that ATP is always witnessed by a formula in a single free variable, and for formulas, not having ATP is closed under disjunction. Second, we show the equivalence of ATP and [Formula: see text]-ATP, and provide a criterion for theories to have not ATP (being NATP). Using these combinatorial observations, we find algebraic examples (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A preservation theorem for theories without the tree property of the first kind.Jan Dobrowolski & Hyeungjoon Kim - 2017 - Mathematical Logic Quarterly 63 (6):536-543.
    We prove the NTP1 property of a geometric theory T is inherited by theories of lovely pairs and H‐structures associated to T. We also provide a class of examples of nonsimple geometric NTP1 theories.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generic variations and NTP$$_1$$1.Jan Dobrowolski - 2018 - Archive for Mathematical Logic 57 (7-8):861-871.
    We prove a preservation theorem for NTP\ in the context of the generic variations construction. We also prove that NTP\ is preserved under adding to a geometric theory a generic predicate.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • SOP1, SOP2, and antichain tree property.JinHoo Ahn & Joonhee Kim - 2024 - Annals of Pure and Applied Logic 175 (3):103402.
    Download  
     
    Export citation  
     
    Bookmark  
  • Positive indiscernibles.Mark Kamsma - 2024 - Archive for Mathematical Logic 63 (7):921-940.
    We generalise various theorems for finding indiscernible trees and arrays to positive logic: based on an existing modelling theorem for s-trees, we prove modelling theorems for str-trees, str$$_0$$ 0 -trees (the reduct of str-trees that forgets the length comparison relation) and arrays. In doing so, we prove stronger versions for basing—rather than locally basing or EM-basing—str-trees on s-trees and str$$_0$$ 0 -trees on str-trees. As an application we show that a thick positive theory has k-$$\mathsf {TP_2}$$ TP 2 iff it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the number of independent orders.Kota Takeuchi & Akito Tsuboi - 2021 - Annals of Pure and Applied Logic 172 (2):102886.
    Download  
     
    Export citation  
     
    Bookmark