Switch to: References

Citations of:

Mathematical concepts

In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press (2008)

Add citations

You must login to add citations.
  1. Russell's Unknown Logicism: A Study in the History and Philosophy of Mathematics.Sébastien Gandon - 2012 - Houndmills, England and New York: Palgrave-Macmillan.
    In this excellent book Sebastien Gandon focuses mainly on Russell's two major texts, Principa Mathematica and Principle of Mathematics, meticulously unpicking the details of these texts and bringing a new interpretation of both the mathematical and the philosophical content. Winner of The Bertrand Russell Society Book Award 2013.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Induction and explanatory definitions in mathematics.Lehet Ellen - 2019 - Synthese 198 (2):1161-1175.
    In this paper, I argue that there are cases of explanatory induction in mathematics. To do so, I first introduce the notion of explanatory definition in the context of mathematical explanation. A large part of the paper is dedicated to introducing and analyzing this notion of explanatory definition and the role it plays in mathematics. After doing so, I discuss a particular inductive definition in advanced mathematics—CW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ CW}$$\end{document}-complexes—and argue that it is (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Developments in Research on Mathematical Practice and Cognition.Alison Pease, Markus Guhe & Alan Smaill - 2013 - Topics in Cognitive Science 5 (2):224-230.
    We describe recent developments in research on mathematical practice and cognition and outline the nine contributions in this special issue of topiCS. We divide these contributions into those that address (a) mathematical reasoning: patterns, levels, and evaluation; (b) mathematical concepts: evolution and meaning; and (c) the number concept: representation and processing.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Gauss' quadratic reciprocity theorem and mathematical fruitfulness.Audrey Yap - 2011 - Studies in History and Philosophy of Science Part A 42 (3):410-415.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Explanation, Existence and Natural Properties in Mathematics – A Case Study: Desargues’ Theorem.Marc Lange - 2015 - Dialectica 69 (4):435-472.
    Download  
     
    Export citation  
     
    Bookmark   9 citations