Switch to: References

Add citations

You must login to add citations.
  1. Abstraction and Idealization in the Formal Verification of Software Systems.Nicola Angius - 2013 - Minds and Machines 23 (2):211-226.
    Questions concerning the epistemological status of computer science are, in this paper, answered from the point of view of the formal verification framework. State space reduction techniques adopted to simplify computational models in model checking are analysed in terms of Aristotelian abstractions and Galilean idealizations characterizing the inquiry of empirical systems. Methodological considerations drawn here are employed to argue in favour of the scientific understanding of computer science as a discipline. Specifically, reduced models gained by Dataion are acknowledged as Aristotelian (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Pragmatic Theory of Computational Artefacts.Alessandro G. Buda & Giuseppe Primiero - 2024 - Minds and Machines 34 (1):139-170.
    Some computational phenomena rely essentially on pragmatic considerations, and seem to undermine the independence of the specification from the implementation. These include software development, deviant uses, esoteric languages and recent data-driven applications. To account for them, the interaction between pragmatics, epistemology and ontology in computational artefacts seems essential, indicating the need to recover the role of the language metaphor. We propose a User Levels (ULs) structure as a pragmatic complement to the Levels of Abstraction (LoAs)-based structure defining the ontology and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Building General Knowledge of Mechanisms in Information Security.Jonathan M. Spring & Phyllis Illari - 2019 - Philosophy and Technology 32 (4):627-659.
    We show how more general knowledge can be built in information security, by the building of knowledge of mechanism clusters, some of which are multifield. By doing this, we address in a novel way the longstanding philosophical problem of how, if at all, we come to have knowledge that is in any way general, when we seem to be confined to particular experiences. We also address the issue of building knowledge of mechanisms by studying an area that is new to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Building General Knowledge of Mechanisms in Information Security.Jonathan M. Spring & Phyllis Illari - 2019 - Philosophy and Technology 32 (4):627-659.
    We show how more general knowledge can be built in information security, by the building of knowledge of mechanism clusters, some of which are multifield. By doing this, we address in a novel way the longstanding philosophical problem of how, if at all, we come to have knowledge that is in any way general, when we seem to be confined to particular experiences. We also address the issue of building knowledge of mechanisms by studying an area that is new to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Cognitive? Science?J. Ignacio Serrano, M. Dolores del Castillo & Manuel Carretero - 2014 - Foundations of Science 19 (2):115-131.
    Cognitive Science is a promising field of research that deals with one of the most fundamental questions ever: how do beings know? However, despite the long and extensive tradition of the field it has not yet become an area of knowledge with scientific identity. This is primarily due to three reasons: the lack of boundaries in defining the object of study, i.e. cognition, the lack of a precise, robust and consistent scientific methodology and results, and the inner problems derived from (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Stretching the Traditional Notion of Experiment in Computing: Explorative Experiments.Viola Schiaffonati - 2016 - Science and Engineering Ethics 22 (3):647-665.
    Experimentation represents today a ‘hot’ topic in computing. If experiments made with the support of computers, such as computer simulations, have received increasing attention from philosophers of science and technology, questions such as “what does it mean to do experiments in computer science and engineering and what are their benefits?” emerged only recently as central in the debate over the disciplinary status of the discipline. In this work we aim at showing, also by means of paradigmatic examples, how the traditional (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Explorative Experiments: A Paradigm Shift to Deal with Severe Uncertainty in Autonomous Robotics.Viola Schiaffonati - 2022 - Perspectives on Science 30 (2):284-304.
    This paper presents a case of severe uncertainty in the development of autonomous and intelligent systems in Artificial Intelligence and autonomous robotics. After discussing how uncertainty emerges from the complexity of the systems and their interaction with unknown environments, the paper describes the novel framework of explorative experiments. This framework presents a suitable context in which many of the issues relative to uncertainty, both at the epistemological level and at the ethical one, in this field should be reframed. The case (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computing and Experiments: A Methodological View on the Debate on the Scientific Nature of Computing.Viola Schiaffonati & Mario Verdicchio - 2014 - Philosophy and Technology 27 (3):359-376.
    The question about the scientific nature of computing has been widely debated with no universal consensus reached about its disciplinary status. Positions vary from acknowledging computing as the science of computers to defining it as a synthetic engineering discipline. In this paper, we aim at discussing the nature of computing from a methodological perspective. We consider, in particular, the nature and role of experiments in this field, whether they can be considered close to the traditional experimental scientific method or, instead, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Computing as Empirical Science- Evolution as a Concept.Paweł Polak - 2016 - Studies in Logic, Grammar and Rhetoric 48 (1):49-69.
    This article presents the evolution of philosophical and methodological considerations concerning empiricism in computer/computing science. In this study, we trace the most important current events in the history of reflection on computing. The forerunners of Artificial Intelligence H.A. Simon and A. Newell in their paper Computer Science As Empirical Inquiry started these considerations. Later the concept of empirical computer science was developed by S.S. Shapiro, P. Wegner, A.H. Eden and P.J. Denning. They showed various empirical aspects of computing. This led (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A refinement to the general mechanistic account.Eric Nelson Hatleback & Jonathan M. Spring - 2019 - European Journal for Philosophy of Science 9 (2):19.
    Phyllis Illari and Jon Williamson propose a formulation for a general mechanistic account, the purpose of which is to capture the similarities across mechanistic accounts in the sciences. Illari and Williamson extract insight from mechanisms in astrophysics—which are notably different from the typical biological mechanisms discussed in the literature on mechanisms—to show how their general mechanistic account accommodates mechanisms across various sciences. We present argumentation that demonstrates why an amendment is necessary to the ontology referred to by the general mechanistic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computers in Abstraction/Representation Theory.Samuel C. Fletcher - 2018 - Minds and Machines 28 (3):445-463.
    Recently, Horsman et al. have proposed a new framework, Abstraction/Representation theory, for understanding and evaluating claims about unconventional or non-standard computation. Among its attractive features, the theory in particular implies a novel account of what is means to be a computer. After expounding on this account, I compare it with other accounts of concrete computation, finding that it does not quite fit in the standard categorization: while it is most similar to some semantic accounts, it is not itself a semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Current perspectives on the development of the philosophy of informatics.Paweł Polak - 2017 - Philosophical Problems in Science 63:77-100.
    This article is an overview of the philosophy of informatics with a special regard to some Polish philosophers. It juxtaposes the informationistic worldview with the long-prevailing mechanical conceptualization of nature before introducing the metaphysical perspective of the information revolution in sciences. The article shows also how ontic pancomputationalism – regarded as an update to structural realism – could enrich the philosophical research in some classical topics. The paper concludes with a discussion of the philosophy of Jan Salamucha, a philosopher from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation