Switch to: References

Add citations

You must login to add citations.
  1. Logic, Mathematics, and the A Priori, Part II: Core Logic as Analytic, and as the Basis for Natural Logicism.Neil Tennant - 2014 - Philosophia Mathematica 22 (3):321-344.
    We examine the sense in which logic is a priori, and explain how mathematical theories can be dichotomized non-trivially into analytic and synthetic portions. We argue that Core Logic contains exactly the a-priori-because-analytically-valid deductive principles. We introduce the reader to Core Logic by explaining its relationship to other logical systems, and stating its rules of inference. Important metatheorems about Core Logic are reported, and its important features noted. Core Logic can serve as the basis for a foundational program that could (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Core Gödel.Neil Tennant - 2023 - Notre Dame Journal of Formal Logic 64 (1):15-59.
    This study examines how the Gödel phenomena are to be treated in core logic. We show in formal detail how one can use core logic in the metalanguage to prove Gödel’s incompleteness theorems for arithmetic even when classical logic is used for logical closure in the object language.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth table logic, with a survey of embeddability results.Neil Tennant - 1989 - Notre Dame Journal of Formal Logic 30 (3):459-484.
    Kalrnaric. We set out a system T, consisting of normal proofs constructed by means of elegantly symmetrical introduction and elimination rules. In the system T there are two requirements, called ( ) and ()), on applications of discharge rules. T is sound and complete for Kalmaric arguments. ( ) requires nonvacuous discharge of assumptions; ()) requires that the assumption discharged be the sole one available of highest degree. We then consider a 'Duhemian' extension T*, obtained simply by dropping the requirement (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Rule-Irredundancy and the Sequent Calculus for Core Logic.Neil Tennant - 2016 - Notre Dame Journal of Formal Logic 57 (1):105-125.
    We explore the consequences, for logical system-building, of taking seriously the aim of having irredundant rules of inference, and a preference for proofs of stronger results over proofs of weaker ones. This leads one to reconsider the structural rules of REFLEXIVITY, THINNING, and CUT. REFLEXIVITY survives in the minimally necessary form $\varphi:\varphi$. Proofs have to get started. CUT is subject to a CUT-elimination theorem, to the effect that one can always make do without applications of CUT. So CUT is redundant, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Carnap, gödel, and the analyticity of arithmetic.Neil Tennant - 2008 - Philosophia Mathematica 16 (1):100-112.
    Michael Friedman maintains that Carnap did not fully appreciate the impact of Gödel's first incompleteness theorem on the prospect for a purely syntactic definition of analyticity that would render arithmetic analytically true. This paper argues against this claim. It also challenges a common presumption on the part of defenders of Carnap, in their diagnosis of the force of Gödel's own critique of Carnap in his Gibbs Lecture. The author is grateful to Michael Friedman for valuable comments. Part of the research (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Maintaining Concentration.Neil Tennant - 1994 - Analysis 54 (3):143 - 152.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cut for core logic.Neil Tennant - 2012 - Review of Symbolic Logic 5 (3):450-479.
    The motivation for Core Logic is explained. Its system of proof is set out. It is then shown that, although the system has no Cut rule, its relation of deducibility obeys Cut with epistemic gain.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Ultimate Normal Forms for Parallelized Natural Deductions.Neil Tennant - 2002 - Logic Journal of the IGPL 10 (3):299-337.
    The system of natural deduction that originated with Gentzen , and for which Prawitz proved a normalization theorem, is re-cast so that all elimination rules are in parallel form. This enables one to prove a very exigent normalization theorem. The normal forms that it provides have all disjunction-eliminations as low as possible, and have no major premisses for eliminations standing as conclusions of any rules. Normal natural deductions are isomorphic to cut-free, weakening-free sequent proofs. This form of normalization theorem renders (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations