Switch to: References

Add citations

You must login to add citations.
  1. Compactness and guessing principles in the Radin extensions.Omer Ben-Neria & Jing Zhang - 2023 - Journal of Mathematical Logic 23 (2).
    We investigate the interaction between compactness principles and guessing principles in the Radin forcing extensions. In particular, we show that in any Radin forcing extension with respect to a measure sequence on [Formula: see text], if [Formula: see text] is weakly compact, then [Formula: see text] holds. This provides contrast with a well-known theorem of Woodin, who showed that in a certain Radin extension over a suitably prepared ground model relative to the existence of large cardinals, the diamond principle fails (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Square with built-in diamond-plus.Assaf Rinot & Ralf Schindler - 2017 - Journal of Symbolic Logic 82 (3):809-833.
    We formulate combinatorial principles that combine the square principle with various strong forms of the diamond principle, and prove that the strongest amongst them holds inLfor every infinite cardinal.As an application, we prove that the following two hold inL:1.For every infinite regular cardinalλ, there exists a special λ+-Aronszajn tree whose projection is almost Souslin;2.For every infinite cardinalλ, there exists arespectingλ+-Kurepa tree; Roughly speaking, this means that this λ+-Kurepa tree looks very much like the λ+-Souslin trees that Jensen constructed inL.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Notes on Singular Cardinal Combinatorics.James Cummings - 2005 - Notre Dame Journal of Formal Logic 46 (3):251-282.
    We present a survey of combinatorial set theory relevant to the study of singular cardinals and their successors. The topics covered include diamonds, squares, club guessing, forcing axioms, and PCF theory.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Some results about (+) proved by iterated forcing.Tetsuya Ishiu & Paul B. Larson - 2012 - Journal of Symbolic Logic 77 (2):515-531.
    We shall show the consistency of CH+ᄀ(+) and CH+(+)+ there are no club guessing sequences on ω₁. We shall also prove that ◊⁺ does not imply the existence of a strong club guessing sequence ω₁.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The saturation of club guessing ideals.Tetsuya Ishiu - 2006 - Annals of Pure and Applied Logic 142 (1):398-424.
    We prove that it is consistent that there exists a saturated tail club guessing ideal on ω1 which is not a restriction of the non-stationary ideal. Two proofs are presented. The first one uses a new forcing axiom whose consistency can be proved from a supercompact cardinal. The resulting model can satisfy either CH or 20=2. The second one is a direct proof from a Woodin cardinal, which gives a witnessing model with CH.
    Download  
     
    Export citation  
     
    Bookmark  
  • The comparison of various club guessing principles.Tetsuya Ishiu - 2015 - Annals of Pure and Applied Logic 166 (5):583-600.
    Download  
     
    Export citation  
     
    Bookmark   2 citations