Switch to: References

Add citations

You must login to add citations.
  1. The minimal cofinality of an ultrapower of ω and the cofinality of the symmetric group can be larger than b+.Heike Mildenberger & Saharon Shelah - 2011 - Journal of Symbolic Logic 76 (4):1322-1340.
    Download  
     
    Export citation  
     
    Bookmark  
  • The cofinality of the infinite symmetric group and groupwise density.Jörg Brendle & Maria Losada - 2003 - Journal of Symbolic Logic 68 (4):1354-1361.
    We show that g ≤ c(Sym(ω)) where g is the groupwise density number and c(Sym(ω)) is the cofinality of the infinite symmetric group. This solves (the second half of) a problem addressed by Thomas.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The relative consistency of {$\germ g<{\rm cf})$}.Heike Mildenbergert & Saharon Shelah - 2002 - Journal of Symbolic Logic 67 (1):297-314.
    We prove the consistency result from the title. By forcing we construct a model of g = ℵ l , b = cf(Sym(ω)) = ℵ 2.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (15 other versions)2000 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium 2000.Carol Wood - 2001 - Bulletin of Symbolic Logic 7 (1):82-163.
    Download  
     
    Export citation  
     
    Bookmark  
  • Van Douwen’s diagram for dense sets of rationals.Jörg Brendle - 2006 - Annals of Pure and Applied Logic 143 (1-3):54-69.
    We investigate cardinal invariants related to the structure of dense sets of rationals modulo the nowhere dense sets. We prove that , thus dualizing the already known [B. Balcar, F. Hernández-Hernández, M. Hrušák, Combinatorics of dense subsets of the rationals, Fund. Math. 183 59–80, Theorem 3.6]. We also show the consistency of each of and . Our results answer four questions of Balcar, Hernández and Hrušák [B. Balcar, F. Hernández-Hernández, M. Hrušák, Combinatorics of dense subsets of the rationals, Fund. Math. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the length of chains of proper subgroups covering a topological group.Taras Banakh, Dušan Repovš & Lyubomyr Zdomskyy - 2011 - Archive for Mathematical Logic 50 (3-4):411-421.
    We prove that if an ultrafilter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} is not coherent to a Q-point, then each analytic non-σ-bounded topological group G admits an increasing chain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle G_\alpha:\alpha < \mathfrak b(\mathcal L)\rangle}$$\end{document} of its proper subgroups such that: (i) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bigcup_{\alpha}G_\alpha=G}$$\end{document}; and (ii) For every σ-bounded subgroup H of G there exists α such that \documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Groupwise density cannot be much bigger than the unbounded number.Saharon Shelah - 2008 - Mathematical Logic Quarterly 54 (4):340-344.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Increasing the groupwise density number by c.c.c. forcing.Heike Mildenberger & Saharon Shelah - 2007 - Annals of Pure and Applied Logic 149 (1-3):7-13.
    Download  
     
    Export citation  
     
    Bookmark   1 citation