Switch to: References

Add citations

You must login to add citations.
  1. Background Independence, Diffeomorphism Invariance, and the Meaning of Coordinates.Oliver Pooley - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser.
    Diffeomorphism invariance is sometimes taken to be a criterion of background independence. This claim is commonly accompanied by a second, that the genuine physical magnitudes (the ``observables'') of background-independent theories and those of background-dependent (non-diffeomorphism-invariant) theories are essentially different in nature. I argue against both claims. Background-dependent theories can be formulated in a diffeomorphism-invariant manner. This suggests that the nature of the physical magnitudes of relevantly analogous theories (one background free, the other background dependent) is essentially the same. The temptation (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On Identifying Background-Structure in Classical Field Theories.Ryan Samaroo - 2011 - Philosophy of Science 78 (5):1070-1081.
    I examine a property of theories called "background-independence" that Einsteinian gravitation is thought to exemplify. This concept has figured in the work of Rovelli (2001, 2004), Smolin (2006), Giulini (2007), and Belot (2011), among others. I propose and evaluate a few candidates for background-independence, and I show that there is something chimaerical about the concept. I argue, however, that there is a proposal that clarifies the feature of Einsteinian gravitation that motivates the concept.
    Download  
     
    Export citation  
     
    Bookmark  
  • Saving Newton's Text: Documents, Readers, and the Ways of the World.Robert Palter - 1986 - Studies in History and Philosophy of Science Part A 18 (4):385.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Did Einstein stumble? The debate over general covariance.John D. Norton - 1995 - Erkenntnis 42 (2):223 - 245.
    The objection that Einstein's principle of general covariance is not a relativity principle and has no physical content is reviewed. The principal escapes offered for Einstein's viewpoint are evaluated.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Coordinates and covariance: Einstein's view of space-time and the modern view. [REVIEW]John Norton - 1989 - Foundations of Physics 19 (10):1215-1263.
    Where modern formulations of relatively theory use differentiable manifolds to space-time, Einstein simply used open sets of R 4 , following the then current methods of differential geometry. This fact aids resolution of a number of outstanding puzzles concerning Einstein's use of coordinate systems and covariance principles, including the claimed physical significance of covariance principles, their connection to relativity principles, Einstein's apparent confusion of coordinate systems and frames of reference, and his failure to distinguish active and passive transformations, especially in (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Another look at general covariance and the equivalence of reference frames.Dennis Dieks - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (1):174-191.
    In his general theory of relativity (GR) Einstein sought to generalize the special-relativistic equivalence of inertial frames to a principle according to which all frames of reference are equivalent. He claimed to have achieved this aim through the general covariance of the equations of GR. There is broad consensus among philosophers of relativity that Einstein was mistaken in this. That equations can be made to look the same in different frames certainly does not imply in general that such frames are (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Another look at general covariance and the equivalence of reference frames.Dennis Dieks - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (1):174-191.
    In his general theory of relativity Einstein sought to generalize the special-relativistic equivalence of inertial frames to a principle according to which all frames of reference are equivalent. He claimed to have achieved this aim through the general covariance of the equations of GR. There is broad consensus among philosophers of relativity that Einstein was mistaken in this. That equations can be made to look the same in different frames certainly does not imply in general that such frames are physically (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Absolute objects and counterexamples: Jones–Geroch dust, Torretti constant curvature, tetrad-spinor, and scalar density.J. Brian Pitts - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):347-371.
    James L. Anderson analyzed the novelty of Einstein's theory of gravity as its lack of "absolute objects." Michael Friedman's related work has been criticized by Roger Jones and Robert Geroch for implausibly admitting as absolute the timelike 4-velocity field of dust in cosmological models in Einstein's theory. Using the Rosen-Sorkin Lagrange multiplier trick, I complete Anna Maidens's argument that the problem is not solved by prohibiting variation of absolute objects in an action principle. Recalling Anderson's proscription of "irrelevant" variables, I (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Absolute objects and counterexamples: Jones--Geroch dust, Torretti constant curvature, tetrad-spinor, and scalar density.J. Brian Pitts - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37:347-71.
    James L. Anderson analyzed the novelty of Einstein's theory of gravity as its lack of "absolute objects." Michael Friedman's related work has been criticized by Roger Jones and Robert Geroch for implausibly admitting as absolute the timelike 4-velocity field of dust in cosmological models in Einstein's theory. Using the Rosen-Sorkin Lagrange multiplier trick, I complete Anna Maidens's argument that the problem is not solved by prohibiting variation of absolute objects in an action principle. Recalling Anderson's proscription of "irrelevant" variables, I (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • The relevance of irrelevance: Absolute objects and the Jones-Geroch dust velocity counterexample, with a note on spinors.J. Brian Pitts - unknown
    James L. Anderson analyzed the conceptual novelty of Einstein's theory of gravity as its lack of ``absolute objects.'' Michael Friedman's related concept of absolute objects has been criticized by Roger Jones and Robert Geroch for implausibly admitting as absolute the timelike 4-velocity field of dust in cosmological models in Einstein's theory. Using Nathan Rosen's action principle, I complete Anna Maidens's argument that the Jones-Geroch problem is not solved by requiring that absolute objects not be varied. Recalling Anderson's proscription of (globally) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Anderson-Friedman absolute objects program: Several successes, one difficulty.J. Brian Pitts - unknown
    The Anderson-Friedman absolute objects project is reviewed. The Jones-Geroch dust 4-velocity counterexample is resolved by eliminating irrelevant structure. Torretti's example involving constant curvature spaces is shown to have an absolute object on Anderson's analysis. The previously neglected threat of an absolute object from an orthonormal tetrad used for coupling spinors to gravity appears resolvable by eliminating irrelevant fields and using a modified spinor formalism. However, given Anderson's definition, GTR itself has an absolute object (as Robert Geroch has observed recently): a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Absolute objects, counterexamples and general covariance.J. Brian Pitts - unknown
    The Anderson-Friedman absolute objects program has been a favorite analysis of the substantive general covariance that supposedly characterizes Einstein's General Theory of Relativity (GTR). Absolute objects are the same locally in all models (modulo gauge freedom). Substantive general covariance is the lack of absolute objects. Several counterexamples have been proposed, however, including the Jones-Geroch dust and Torretti constant curvature spaces counterexamples. The Jones-Geroch dust case, ostensibly a false positive, is resolved by noting that holes in the dust in some models (...)
    Download  
     
    Export citation  
     
    Bookmark