Switch to: References

Add citations

You must login to add citations.
  1. Pitts' Quantifiers Are Not Topological Quantification.Tomasz Połacik - 1998 - Notre Dame Journal of Formal Logic 39 (4):531-544.
    We show that Pitts' modeling of propositional quantification in intuitionistic logic (as the appropriate interpolants) does not coincide with the topological interpretation. This contrasts with the case of the monadic language and the interpretation over sufficiently regular topological spaces. We also point to the difference between the topological interpretation over sufficiently regular spaces and the interpretation of propositional quantifiers in Kripke models.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Propositional Quantification in the Topological Semantics for S.Philip Kremer - 1997 - Notre Dame Journal of Formal Logic 38 (2):295-313.
    Fine and Kripke extended S5, S4, S4.2 and such to produce propositionally quantified systems , , : given a Kripke frame, the quantifiers range over all the sets of possible worlds. is decidable and, as Fine and Kripke showed, many of the other systems are recursively isomorphic to second-order logic. In the present paper I consider the propositionally quantified system that arises from the topological semantics for S4, rather than from the Kripke semantics. The topological system, which I dub , (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Second order propositional operators over Cantor space.Tomasz Połacik - 1994 - Studia Logica 53 (1):93 - 105.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Propositional Quantification in the Monadic Fragment of Intuitionistic Logic.Tomasz Połacik - 1998 - Journal of Symbolic Logic 63 (1):269-300.
    We study the monadic fragment of second order intuitionistic propositional logic in the language containing the standard propositional connectives and propositional quantifiers. It is proved that under the topological interpretation over any dense-in-itself metric space, the considered fragment collapses to Heyting calculus. Moreover, we prove that the topological interpretation over any dense-in-itself metric space of fragment in question coincides with the so-called Pitts' interpretation. We also prove that all the nonstandard propositional operators of the form q $\mapsto \exists$p ), where (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations