Switch to: References

Add citations

You must login to add citations.
  1. Univalent foundations as structuralist foundations.Dimitris Tsementzis - 2017 - Synthese 194 (9):3583-3617.
    The Univalent Foundations of Mathematics provide not only an entirely non-Cantorian conception of the basic objects of mathematics but also a novel account of how foundations ought to relate to mathematical practice. In this paper, I intend to answer the question: In what way is UF a new foundation of mathematics? I will begin by connecting UF to a pragmatist reading of the structuralist thesis in the philosophy of mathematics, which I will use to define a criterion that a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A meaning explanation for HoTT.Dimitris Tsementzis - 2020 - Synthese 197 (2):651-680.
    In the Univalent Foundations of mathematics spatial notions like “point” and “path” are primitive, rather than derived, and all of mathematics is encoded in terms of them. A Homotopy Type Theory is any formal system which realizes this idea. In this paper I will focus on the question of whether a Homotopy Type Theory can be justified intuitively as a theory of shapes in the same way that ZFC can be justified intuitively as a theory of collections. I first clarify (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations