Switch to: References

Add citations

You must login to add citations.
  1. A Conservative Negation Extension of Positive Semilattice Logic Without the Finite Model Property.Yale Weiss - 2020 - Studia Logica 109 (1):125-136.
    In this article, I present a semantically natural conservative extension of Urquhart’s positive semilattice logic with a sort of constructive negation. A subscripted sequent calculus is given for this logic and proofs of its soundness and completeness are sketched. It is shown that the logic lacks the finite model property. I discuss certain questions Urquhart has raised concerning the decision problem for the positive semilattice logic in the context of this logic and pose some problems for further research.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Shifting Priorities: Simple Representations for Twenty-seven Iterated Theory Change Operators.Hans Rott - 2009 - In Jacek Malinowski David Makinson & Wansing Heinrich (eds.), Towards Mathematical Philosophy. Springer. pp. 269–296.
    Prioritized bases, i.e., weakly ordered sets of sentences, have been used for specifying an agent’s ‘basic’ or ‘explicit’ beliefs, or alternatively for compactly encoding an agent’s belief state without the claim that the elements of a base are in any sense basic. This paper focuses on the second interpretation and shows how a shifting of priorities in prioritized bases can be used for a simple, constructive and intuitive way of representing a large variety of methods for the change of belief (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • A Reinterpretation of the Semilattice Semantics with Applications.Yale Weiss - 2021 - Logica Universalis 15 (2):171-191.
    In the early 1970s, Alasdair Urquhart proposed a semilattice semantics for relevance logic which he provided with an influential informational interpretation. In this article, I propose a BHK-inspired reinterpretation of the semantics which is related to Kit Fine’s truthmaker semantics. I discuss and compare Urquhart’s and Fine’s semantics and show how simple modifications of Urquhart’s semantics can be used to characterize both full propositional intuitionistic logic and Jankov’s logic. I then present (quasi-)relevant companions for both of these systems. Finally, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Semantics for Pure Theories of Connexive Implication.Yale Weiss - 2022 - Review of Symbolic Logic 15 (3):591-606.
    In this article, I provide Urquhart-style semilattice semantics for three connexive logics in an implication-negation language (I call these “pure theories of connexive implication”). The systems semantically characterized include the implication-negation fragment of a connexive logic of Wansing, a relevant connexive logic recently developed proof-theoretically by Francez, and an intermediate system that is novel to this article. Simple proofs of soundness and completeness are given and the semantics is used to establish various facts about the systems (e.g., that two of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Characteristic Frame for Positive Intuitionistic and Relevance Logic.Yale Weiss - 2020 - Studia Logica 109 (4):687-699.
    I show that the lattice of the positive integers ordered by division is characteristic for Urquhart’s positive semilattice relevance logic; that is, a formula is valid in positive semilattice relevance logic if and only if it is valid in all models over the positive integers ordered by division. I show that the same frame is characteristic for positive intuitionistic logic, where the class of models over it is restricted to those satisfying a heredity condition. The results of this article highlight (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relevance Logic: Problems Open and Closed.Alasdair Urquhart - 2016 - Australasian Journal of Logic 13 (1):11-20.
    I discuss a collection of problems in relevance logic. The main problems discussed are: the decidability of the positive semilattice system, decidability of the fragments of R in a restricted number of variables, and the complexity of the decision problem for the implicational fragment of R. Some related problems are discussed along the way.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • New axiomatics for relevant logics, I.Robert K. Meyer - 1974 - Journal of Philosophical Logic 3 (1/2):53 - 86.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Further Results on Proof Theories For Semilattice Logics.Robert K. Meyer, Errol P. Martin, Steve Giambrone & Alasdair Urquhart - 1988 - Mathematical Logic Quarterly 34 (4):301-304.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A contractionless semilattice semantics.Steve Giambrone, Robert K. Meyer & Alasdair Urquhart - 1987 - Journal of Symbolic Logic 52 (2):526-529.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Computational Learning Semantics for Inductive Empirical Knowledge.Kevin T. Kelly - 2014 - In Alexandru Baltag & Sonja Smets (eds.), Johan van Benthem on Logic and Information Dynamics. Cham, Switzerland: Springer International Publishing. pp. 289-337.
    This chapter presents a new semantics for inductive empirical knowledge. The epistemic agent is represented concretely as a learner who processes new inputs through time and who forms new beliefs from those inputs by means of a concrete, computable learning program. The agent’s belief state is represented hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit and as having converged to true belief from the present time onward. Familiar topics are re-examined within (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations