Switch to: References

Add citations

You must login to add citations.
  1. The first-order logic of CZF is intuitionistic first-order logic.Robert Passmann - 2024 - Journal of Symbolic Logic 89 (1):308-330.
    We prove that the first-order logic of CZF is intuitionistic first-order logic. To do so, we introduce a new model of transfinite computation (Set Register Machines) and combine the resulting notion of realisability with Beth semantics. On the way, we also show that the propositional admissible rules of CZF are exactly those of intuitionistic propositional logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Formally continuous functions on Baire space.Tatsuji Kawai - 2018 - Mathematical Logic Quarterly 64 (3):192-200.
    A function from Baire space to the natural numbers is called formally continuous if it is induced by a morphism between the corresponding formal spaces. We compare formal continuity to two other notions of continuity on Baire space working in Bishop constructive mathematics: one is a function induced by a Brouwer‐operation (i.e., inductively defined neighbourhood function); the other is a function uniformly continuous near every compact image. We show that formal continuity is equivalent to the former while it is strictly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The axiom of multiple choice and models for constructive set theory.Benno van den Berg & Ieke Moerdijk - 2014 - Journal of Mathematical Logic 14 (1):1450005.
    We propose an extension of Aczel's constructive set theory CZF by an axiom for inductive types and a choice principle, and show that this extension has the following properties: it is interpretable in Martin-Löf's type theory. In addition, it is strong enough to prove the Set Compactness theorem and the results in formal topology which make use of this theorem. Moreover, it is stable under the standard constructions from algebraic set theory, namely exact completion, realizability models, forcing as well as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Non-deterministic inductive definitions.Benno van den Berg - 2013 - Archive for Mathematical Logic 52 (1-2):113-135.
    We study a new proof principle in the context of constructive Zermelo-Fraenkel set theory based on what we will call “non-deterministic inductive definitions”. We give applications to formal topology as well as a predicative justification of this principle.
    Download  
     
    Export citation  
     
    Bookmark   2 citations