Switch to: References

Citations of:

The development of intuitionistic logic

The Stanford Encyclopedia of Philosophy (2008)

Add citations

You must login to add citations.
  1. What is a Relevant Connective?Shawn Standefer - 2022 - Journal of Philosophical Logic 51 (4):919-950.
    There appears to be few, if any, limits on what sorts of logical connectives can be added to a given logic. One source of potential limitations is the motivating ideology associated with a logic. While extraneous to the logic, the motivating ideology is often important for the development of formal and philosophical work on that logic, as is the case with intuitionistic logic. One family of logics for which the philosophical ideology is important is the family of relevant logics. In (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Constructivity and Computability in Historical and Philosophical Perspective.Jacques Dubucs & Michel Bourdeau (eds.) - 2014 - Dordrecht, Netherland: Springer.
    Ranging from Alan Turing’s seminal 1936 paper to the latest work on Kolmogorov complexity and linear logic, this comprehensive new work clarifies the relationship between computability on the one hand and constructivity on the other. The authors argue that even though constructivists have largely shed Brouwer’s solipsistic attitude to logic, there remain points of disagreement to this day. Focusing on the growing pains computability experienced as it was forced to address the demands of rapidly expanding applications, the content maps the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inference Rules and the Meaning of the Logical Constants.Hermógenes Oliveira - 2019 - Dissertation, Eberhard Karls Universität Tübingen
    The dissertation provides an analysis and elaboration of Michael Dummett's proof-theoretic notions of validity. Dummett's notions of validity are contrasted with standard proof-theoretic notions and formally evaluated with respect to their adequacy to propositional intuitionistic logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • What is Intuitionistic Arithmetic?V. Alexis Peluce - 2024 - Erkenntnis 89 (8):3351-3376.
    L.E.J. Brouwer famously took the subject’s intuition of time to be foundational and from there ventured to build up mathematics. Despite being largely critical of formal methods, Brouwer valued axiomatic systems for their use in both communication and memory. Through the Dutch Mathematical Society, Gerrit Mannoury posed a challenge in 1927 to provide an axiomatization of intuitionistic arithmetic. Arend Heyting’s 1928 axiomatization was chosen as the winner and has since enjoyed the status of being the _de facto_ formalization of intuitionistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Brouwer's Conception of Truth.Casper Storm Hansen - 2016 - Philosophia Mathematica 24 (3):379-400.
    In this paper it is argued that the understanding of Brouwer as replacing truth conditions with assertability or proof conditions, in particular as codified in the so-called Brouwer-Heyting-Kolmogorov Interpretation, is misleading and conflates a weak and a strong notion of truth that have to be kept apart to understand Brouwer properly: truth-as-anticipation and truth- in-content. These notions are explained, exegetical documentation provided, and semi-formal recursive definitions are given.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Delimited control operators prove Double-negation Shift.Danko Ilik - 2012 - Annals of Pure and Applied Logic 163 (11):1549-1559.
    We propose an extension of minimal intuitionistic predicate logic, based on delimited control operators, that can derive the predicate-logic version of the double-negation shift schema, while preserving the disjunction and existence properties.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • From Philosophical Traditions to Scientific Developments: Reconsidering the Response to Brouwer’s Intuitionism.Kati Kish Bar-On - 2022 - Synthese 200 (6):1–25.
    Brouwer’s intuitionistic program was an intriguing attempt to reform the foundations of mathematics that eventually did not prevail. The current paper offers a new perspective on the scientific community’s lack of reception to Brouwer’s intuitionism by considering it in light of Michael Friedman’s model of parallel transitions in philosophy and science, specifically focusing on Friedman’s story of Einstein’s theory of relativity. Such a juxtaposition raises onto the surface the differences between Brouwer’s and Einstein’s stories and suggests that contrary to Einstein’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Shaping the Enemy: Foundational Labelling by L.E.J. Brouwer and A. Heyting.Miriam Franchella - 2018 - History and Philosophy of Logic 40 (2):152-181.
    The use of the three labels to denote the three foundational schools of the early twentieth century are now part of literature. Yet, neither their number nor the...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Montague’s Paradox, Informal Provability, and Explicit Modal Logic.Walter Dean - 2014 - Notre Dame Journal of Formal Logic 55 (2):157-196.
    The goal of this paper is to explore the significance of Montague’s paradox—that is, any arithmetical theory $T\supseteq Q$ over a language containing a predicate $P$ satisfying $P\rightarrow \varphi $ and $T\vdash \varphi \,\therefore\,T\vdash P$ is inconsistent—as a limitative result pertaining to the notions of formal, informal, and constructive provability, in their respective historical contexts. To this end, the paradox is reconstructed in a quantified extension $\mathcal {QLP}$ of Artemov’s logic of proofs. $\mathcal {QLP}$ contains both explicit modalities $t:\varphi $ (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Semantic Hierarchy for Intuitionistic Logic.Guram Bezhanishvili & Wesley H. Holliday - 2019 - Indagationes Mathematicae 30 (3):403-469.
    Brouwer's views on the foundations of mathematics have inspired the study of intuitionistic logic, including the study of the intuitionistic propositional calculus and its extensions. The theory of these systems has become an independent branch of logic with connections to lattice theory, topology, modal logic and other areas. This paper aims to present a modern account of semantics for intuitionistic propositional systems. The guiding idea is that of a hierarchy of semantics, organized by increasing generality: from the least general Kripke (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Context of Inference.Curtis Franks - 2018 - History and Philosophy of Logic 39 (4):365-395.
    There is an ambiguity in the concept of deductive validity that went unnoticed until the middle of the twentieth century. Sometimes an inference rule is called valid because its conclusion is a theorem whenever its premises are. But often something different is meant: The rule's conclusion follows from its premises even in the presence of other assumptions. In many logical environments, these two definitions pick out the same rules. But other environments are context-sensitive, and in these environments the second notion (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation