Switch to: References

Add citations

You must login to add citations.
  1. On the Necessity of Entanglement for the Explanation of Quantum Speedup.Michael Cuffaro - manuscript
    Of the many and varied applications of quantum information theory, perhaps the most fascinating is the sub-field of quantum computation. In this sub-field, computational algorithms are designed which utilise the resources available in quantum systems in order to compute solutions to computational problems with, in some cases, exponentially fewer resources than any known classical algorithm. While the fact of quantum computational speedup is almost beyond doubt, the source of quantum speedup is still a matter of debate. In this paper I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Physical Explanation for Quantum Computational Speedup.Michael Cuffaro - 2013 - Dissertation, The University of Western Ontario
    The aim of this dissertation is to clarify the debate over the explanation of quantum speedup and to submit, for the reader's consideration, a tentative resolution to it. In particular, I argue, in this dissertation, that the physical explanation for quantum speedup is precisely the fact that the phenomenon of quantum entanglement enables a quantum computer to fully exploit the representational capacity of Hilbert space. This is impossible for classical systems, joint states of which must always be representable as product (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Many worlds, the cluster-state quantum computer, and the problem of the preferred basis.Michael E. Cuffaro - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):35-42.
    I argue that the many worlds explanation of quantum computation is not licensed by, and in fact is conceptually inferior to, the many worlds interpretation of quantum mechanics from which it is derived. I argue that the many worlds explanation of quantum computation is incompatible with the recently developed cluster state model of quantum computation. Based on these considerations I conclude that we should reject the many worlds explanation of quantum computation.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Relational Time-Symmetric Framework for Analyzing the Quantum Computational Speedup.G. Castagnoli, E. Cohen, A. K. Ekert & A. C. Elitzur - 2019 - Foundations of Physics 49 (10):1200-1230.
    The usual representation of quantum algorithms is limited to the process of solving the problem. We extend it to the process of setting the problem. Bob, the problem setter, selects a problem-setting by the initial measurement. Alice, the problem solver, unitarily computes the corresponding solution and reads it by the final measurement. This simple extension creates a new perspective from which to see the quantum algorithm. First, it highlights the relevance of time-symmetric quantum mechanics to quantum computation: the problem-setting and (...)
    Download  
     
    Export citation  
     
    Bookmark