Switch to: References

Add citations

You must login to add citations.
  1. Predicate counterparts of modal logics of provability: High undecidability and Kripke incompleteness.Mikhail Rybakov - forthcoming - Logic Journal of the IGPL.
    In this paper, the predicate counterparts, defined both axiomatically and semantically by means of Kripke frames, of the modal propositional logics $\textbf {GL}$, $\textbf {Grz}$, $\textbf {wGrz}$ and their extensions are considered. It is proved that the set of semantical consequences on Kripke frames of every logic between $\textbf {QwGrz}$ and $\textbf {QGL.3}$ or between $\textbf {QwGrz}$ and $\textbf {QGrz.3}$ is $\Pi ^1_1$-hard even in languages with three (sometimes, two) individual variables, two (sometimes, one) unary predicate letters, and a single (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Complete additivity and modal incompleteness.Wesley H. Holliday & Tadeusz Litak - 2019 - Review of Symbolic Logic 12 (3):487-535.
    In this article, we tell a story about incompleteness in modal logic. The story weaves together an article of van Benthem, “Syntactic aspects of modal incompleteness theorems,” and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, ${\cal V}$-baos. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem’s article resolves the open question (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Complexity and expressivity of propositional dynamic logics with finitely many variables.Mikhail Rybakov & Dmitry Shkatov - 2018 - Logic Journal of the IGPL 26 (5):539-547.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Complexity of finite-variable fragments of EXPTIME-complete logics ★.Mikhail Rybakov - 2007 - Journal of Applied Non-Classical Logics 17 (3):359-382.
    The main result of the present paper is that the variable-free fragment of logic K*, the logic with a single K-style modality and its “reflexive and transitive closure,” is EXPTIMEcomplete. It is then shown that this immediately gives EXPTIME-completeness of variable-free fragments of a number of known EXPTIME-complete logics. Our proof contains a general idea of how to construct a polynomial-time reduction of a propositional logic to its n-variable—and even, in the cases of K*, PDL, CTL, ATL, and some others, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Complexity of finite-variable fragments of propositional modal logics of symmetric frames.Mikhail Rybakov & Dmitry Shkatov - forthcoming - Logic Journal of the IGPL.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the complexity of the closed fragment of Japaridze’s provability logic.Fedor Pakhomov - 2014 - Archive for Mathematical Logic 53 (7-8):949-967.
    We consider the well-known provability logic GLP. We prove that the GLP-provability problem for polymodal formulas without variables is PSPACE-complete. For a number n, let L0n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{n}_0}$$\end{document} denote the class of all polymodal variable-free formulas without modalities ⟨n⟩,⟨n+1⟩,...\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle n \rangle,\langle n+1\rangle,...}$$\end{document}. We show that, for every number n, the GLP-provability problem for formulas from L0n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{n}_0}$$\end{document} (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations