Switch to: References

Add citations

You must login to add citations.
  1. The fine structure of the intuitionistic borel hierarchy.Wim Veldman - 2009 - Review of Symbolic Logic 2 (1):30-101.
    In intuitionistic analysis, a subset of a Polish space like or is called positively Borel if and only if it is an open subset of the space or a closed subset of the space or the result of forming either the countable union or the countable intersection of an infinite sequence of (earlier constructed) positively Borel subsets of the space. The operation of taking the complement is absent from this inductive definition, and, in fact, the complement of a positively Borel (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Brouwer’s Fan Theorem as an axiom and as a contrast to Kleene’s alternative.Wim Veldman - 2014 - Archive for Mathematical Logic 53 (5):621-693.
    The paper is a contribution to intuitionistic reverse mathematics. We introduce a formal system called Basic Intuitionistic Mathematics BIM, and then search for statements that are, over BIM, equivalent to Brouwer’s Fan Theorem or to its positive denial, Kleene’s Alternative to the Fan Theorem. The Fan Theorem is true under the intended intuitionistic interpretation and Kleene’s Alternative is true in the model of BIM consisting of the Turing-computable functions. The task of finding equivalents of Kleene’s Alternative is, intuitionistically, a nontrivial (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Two simple sets that are not positively Borel.Wim Veldman - 2005 - Annals of Pure and Applied Logic 135 (1-3):151-209.
    The author proved in his Ph.D. Thesis [W. Veldman, Investigations in intuitionistic hierarchy theory, Ph.D. Thesis, Katholieke Universiteit Nijmegen, 1981] that, in intuitionistic analysis, the positively Borel subsets of Baire space form a genuinely growing hierarchy: every level of the hierarchy contains sets that do not occur at any lower level. It follows from this result that there are natural examples of analytic and also of co-analytic sets that are not positively Borel. It turns out, however, that, in intuitionistic analysis, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Borel Hierarchy Theorem from Brouwer's intuitionistic perspective.Wim Veldman - 2008 - Journal of Symbolic Logic 73 (1):1-64.
    In intuitionistic analysis, "Brouwer's Continuity Principle" implies, together with an "Axiom of Countable Choice", that the positively Borel sets form a genuinely growing hierarchy: every level of the hierarchy contains sets that do not occur at any lower level.
    Download  
     
    Export citation  
     
    Bookmark   3 citations