Switch to: References

Add citations

You must login to add citations.
  1. The properties of modal interpretations of quantum mechanics.Rob Clifton - 1996 - British Journal for the Philosophy of Science 47 (3):371-398.
    Orthodox quantum mechanics includes the principle that an observable of a system possesses a well-defined value if and only if the presence of that value in the system is certain to be confirmed on measurement. Modal interpretations reject the controversial ‘only if’ half of this principle to secure definite outcomes for quantum measurements that leave the apparatus entangled with the object it has measured. However, using a result that turns on the construction of a Kochen–Specker contradiction, I argue that modal (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Whither the Minds?Jeremy Butterfield - 1996 - British Journal for the Philosophy of Science 47 (2):200-221.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Relational Event-Time in Quantum Mechanics.Matías Pasqualini, Olimpia Lombardi & Sebastian Fortin - 2021 - Foundations of Physics 52 (1):1-25.
    Some authors, inspired by the theoretical requirements for the formulation of a quantum theory of gravity, proposed a relational reconstruction of the quantum parameter-time—the time of the unitary evolution, which would make quantum mechanics compatible with relativity. The aim of the present work is to follow the lead of those relational programs by proposing a relational reconstruction of the event-time—which orders the detection of the definite values of the system’s observables. Such a reconstruction will be based on the modal-Hamiltonian interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Schwinger and the ontology of quantum field theory.Edward MacKinnon - 2007 - Foundations of Science 12 (4):295-323.
    An epistemological interpretation of quantum mechanics hinges on the claim that the distinctive features of quantum mechanics can be derived from some distinctive features of an observational basis. Old and new variations of this theme are listed. The program has a limited success in non-relativistic quantum mechanics. The crucial issue is how far it can be extended to quantum field theory without introducing significant ontological postulates. A C*-formulation covers algebraic quantum field theory, but not the standard model. Julian Schwinger’s anabatic (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Possible worlds in the modal interpretation.Meir Hemmo - 1996 - Philosophy of Science 63 (3):337.
    An outline for a modal interpretation in terms of possible worlds is presented. The so-called Schmidt histories are taken to correspond to the physically possible worlds. The decoherence function defined in the histories formulation of quantum theory is taken to prescribe a non-classical probability measure over the set of the possible worlds. This is shown to yield dynamics in the form of transition probabilities for occurrent events in each world. The role of the consistency condition is discussed.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Possible Worlds in the Modal Interpretation.Meir Hemmo - 1996 - Philosophy of Science 63 (5):S330-S337.
    An outline for a modal interpretation in terms of possible worlds is presented. The so-called Schmidt histories are taken to correspond to the physically possible worlds. The decoherence function defined in the histories formulation of quantum theory is taken to prescribe a non-classical probability measure over the set of the possible worlds. This is shown to yield dynamics in the form of transition probabilities for occurrent events in each world. The role of the consistency condition is discussed.
    Download  
     
    Export citation  
     
    Bookmark   1 citation