Switch to: References

Add citations

You must login to add citations.
  1. Resurrection axioms and uplifting cardinals.Joel David Hamkins & Thomas A. Johnstone - 2014 - Archive for Mathematical Logic 53 (3-4):463-485.
    We introduce the resurrection axioms, a new class of forcing axioms, and the uplifting cardinals, a new large cardinal notion, and prove that various instances of the resurrection axioms are equiconsistent over ZFC with the existence of an uplifting cardinal.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $${\theta}$$ θ -supercompact.Brent Cody, Moti Gitik, Joel David Hamkins & Jason A. Schanker - 2015 - Archive for Mathematical Logic 54 (5-6):491-510.
    We prove from suitable large cardinal hypotheses that the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}-supercompact, for any desired θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}. In addition, we prove several global results showing how the entire class of weakly compactcardinals, a proper class, can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals or (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strongly unfoldable, splitting and bounding.Ömer Faruk Bağ & Vera Fischer - 2023 - Mathematical Logic Quarterly 69 (1):7-14.
    Assuming, we show that generalized eventually narrow sequences on a strongly inaccessible cardinal κ are preserved under a one step iteration of the Hechler forcing for adding a dominating κ‐real. Moreover, we show that if κ is strongly unfoldable, and λ is a regular cardinal such that, then there is a set generic extension in which.
    Download  
     
    Export citation  
     
    Bookmark  
  • Indestructible Strong Unfoldability.Joel David Hamkins & Thomas A. Johnstone - 2010 - Notre Dame Journal of Formal Logic 51 (3):291-321.
    Using the lottery preparation, we prove that any strongly unfoldable cardinal $\kappa$ can be made indestructible by all.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Partial near supercompactness.Jason Aaron Schanker - 2013 - Annals of Pure and Applied Logic 164 (2):67-85.
    A cardinal κ is nearly θ-supercompact if for every A⊆θ, there exists a transitive M⊨ZFC− closed under θ and j″θ∈N.2 This concept strictly refines the θ-supercompactness hierarchy as every θ-supercompact cardinal is nearly θ-supercompact, and every nearly 2θ<κ-supercompact cardinal κ is θ-supercompact. Moreover, if κ is a θ-supercompact cardinal for some θ such that θ<κ=θ, we can move to a forcing extension preserving all cardinals below θ++ where κ remains θ-supercompact but is not nearly θ+-supercompact. We will also show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Double helix in large large cardinals and iteration of elementary embeddings.Kentaro Sato - 2007 - Annals of Pure and Applied Logic 146 (2):199-236.
    We consider iterations of general elementary embeddings and, using this notion, point out helices of consistency-wise implications between large large cardinals.Up to now, large cardinal properties have been considered as properties which cannot be accessed by any weaker properties and it has been known that, with respect to this relation, they form a proper hierarchy. The helices we point out significantly change this situation: the same sequence of large cardinal properties occurs repeatedly, changing only the parameters.As results of our investigation (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strongly uplifting cardinals and the boldface resurrection axioms.Joel David Hamkins & Thomas A. Johnstone - 2017 - Archive for Mathematical Logic 56 (7-8):1115-1133.
    We introduce the strongly uplifting cardinals, which are equivalently characterized, we prove, as the superstrongly unfoldable cardinals and also as the almost-hugely unfoldable cardinals, and we show that their existence is equiconsistent over ZFC with natural instances of the boldface resurrection axiom, such as the boldface resurrection axiom for proper forcing.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Diamond (on the regulars) can fail at any strongly unfoldable cardinal.Mirna Džamonja & Joel David Hamkins - 2006 - Annals of Pure and Applied Logic 144 (1-3):83-95.
    If κ is any strongly unfoldable cardinal, then this is preserved in a forcing extension in which κ fails. This result continues the progression of the corresponding results for weakly compact cardinals, due to Woodin, and for indescribable cardinals, due to Hauser.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Strong Measure Zero Sets on for Inaccessible.Nick Steven Chapman & Johannes Philipp Schürz - forthcoming - Journal of Symbolic Logic:1-31.
    We investigate the notion of strong measure zero sets in the context of the higher Cantor space $2^\kappa $ for $\kappa $ at least inaccessible. Using an iteration of perfect tree forcings, we give two proofs of the relative consistency of $$\begin{align*}|2^\kappa| = \kappa^{++} + \forall X \subseteq 2^\kappa:\ X \textrm{ is strong measure zero if and only if } |X| \leq \kappa^+. \end{align*}$$ Furthermore, we also investigate the stronger notion of stationary strong measure zero and show that the equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark