Switch to: References

Add citations

You must login to add citations.
  1. The small‐is‐very‐small principle.Albert Visser - 2019 - Mathematical Logic Quarterly 65 (4):453-478.
    The central result of this paper is the small‐is‐very‐small principle for restricted sequential theories. The principle says roughly that whenever the given theory shows that a definable property has a small witness, i.e., a witness in a sufficiently small definable cut, then it shows that the property has a very small witness: i.e., a witness below a given standard number. Which cuts are sufficiently small will depend on the complexity of the formula defining the property. We draw various consequences from (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Interpretability degrees of finitely axiomatized sequential theories.Albert Visser - 2014 - Archive for Mathematical Logic 53 (1-2):23-42.
    In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory—like Elementary Arithmetic EA, IΣ1, or the Gödel–Bernays theory of sets and classes GB—have suprema. This partially answers a question posed by Švejdar in his paper (Commentationes Mathematicae Universitatis Carolinae 19:789–813, 1978). The partial solution of Švejdar’s problem follows from a stronger fact: the convexity of the degree structure of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory in the degree (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Friedman-reflexivity.Albert Visser - 2022 - Annals of Pure and Applied Logic 173 (9):103160.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Uniform Density in Lindenbaum Algebras.V. Yu Shavrukov & Albert Visser - 2014 - Notre Dame Journal of Formal Logic 55 (4):569-582.
    In this paper we prove that the preordering $\lesssim $ of provable implication over any recursively enumerable theory $T$ containing a modicum of arithmetic is uniformly dense. This means that we can find a recursive extensional density function $F$ for $\lesssim $. A recursive function $F$ is a density function if it computes, for $A$ and $B$ with $A\lnsim B$, an element $C$ such that $A\lnsim C\lnsim B$. The function is extensional if it preserves $T$-provable equivalence. Secondly, we prove a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations