Switch to: References

Add citations

You must login to add citations.
  1. Categorical abstract algebraic logic: The categorical Suszko operator.George Voutsadakis - 2007 - Mathematical Logic Quarterly 53 (6):616-635.
    Czelakowski introduced the Suszko operator as a basis for the development of a hierarchy of non-protoalgebraic logics, paralleling the well-known abstract algebraic hierarchy of protoalgebraic logics based on the Leibniz operator of Blok and Pigozzi. The scope of the theory of the Leibniz operator was recently extended to cover the case of, the so-called, protoalgebraic π-institutions. In the present work, following the lead of Czelakowski, an attempt is made at lifting parts of the theory of the Suszko operator to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Categorical Abstract Algebraic Logic: Structurality, protoalgebraicity, and correspondence.George Voutsadakis - 2009 - Mathematical Logic Quarterly 55 (1):51-67.
    The notion of an ℐ -matrix as a model of a given π -institution ℐ is introduced. The main difference from the approach followed so far in CategoricalAlgebraic Logic and the one adopted here is that an ℐ -matrix is considered modulo the entire class of morphisms from the underlying N -algebraic system of ℐ into its own underlying algebraic system, rather than modulo a single fixed -logical morphism. The motivation for introducing ℐ -matrices comes from a desire to formulate (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Categorical Abstract Algebraic Logic: Prealgebraicity and Protoalgebraicity.George Voutsadakis - 2007 - Studia Logica 85 (2):215-249.
    Two classes of π are studied whose properties are similar to those of the protoalgebraic deductive systems of Blok and Pigozzi. The first is the class of N-protoalgebraic π-institutions and the second is the wider class of N-prealgebraic π-institutions. Several characterizations are provided. For instance, N-prealgebraic π-institutions are exactly those π-institutions that satisfy monotonicity of the N-Leibniz operator on theory systems and N-protoalgebraic π-institutions those that satisfy monotonicity of the N-Leibniz operator on theory families. Analogs of the correspondence property of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Categorical Abstract Algebraic Logic: More on Protoalgebraicity.George Voutsadakis - 2006 - Notre Dame Journal of Formal Logic 47 (4):487-514.
    Protoalgebraic logics are characterized by the monotonicity of the Leibniz operator on their theory lattices and are at the lower end of the Leibniz hierarchy of abstract algebraic logic. They have been shown to be the most primitive among those logics with a strong enough algebraic character to be amenable to algebraic study techniques. Protoalgebraic π-institutions were introduced recently as an analog of protoalgebraic sentential logics with the goal of extending the Leibniz hierarchy from the sentential framework to the π-institution (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations