Switch to: References

Add citations

You must login to add citations.
  1. Maxwell-Huygens, Newton-Cartan, and Saunders-Knox Space-Times.James Owen Weatherall - 2016 - Philosophy of Science 83 (1):82-92.
    I address a question recently raised by Simon Saunders concerning the relationship between the space-time structure of Newton-Cartan theory and that of what I will call “Maxwell-Huygens space-time.” This discussion will also clarify a connection between Saunders’s work and a recent paper by Eleanor Knox.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Newtonian gravitation in Maxwell spacetime.Elliott D. Chen - 2023 - Studies in History and Philosophy of Science Part A 102 (C):22-30.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Neo-Lorentzian Relativity and the Beginning of the Universe.Daniel Linford - 2021 - European Journal for Philosophy of Science 11 (4):1-38.
    Many physicists have thought that absolute time became otiose with the introduction of Special Relativity. William Lane Craig disagrees. Craig argues that although relativity is empirically adequate within a domain of application, relativity is literally false and should be supplanted by a Neo-Lorentzian alternative that allows for absolute time. Meanwhile, Craig and co-author James Sinclair have argued that physical cosmology supports the conclusion that physical reality began to exist at a finite time in the past. However, on their view, the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The epistemology of spacetime.Neil Dewar, Niels Linnemann & James Read - 2021 - Philosophy Compass 17 (4):e12821.
    Philosophy Compass, Volume 17, Issue 4, April 2022.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Newtonian Equivalence Principles.James Read & Nicholas J. Teh - 2023 - Erkenntnis 88 (8):3479-3503.
    The equivalence principle has constituted one of the cornerstones of discussions in the foundations of spacetime theories over the past century. However, up to this point the principle has been considered overwhelmingly only within the context of relativistic physics. In this article, we demonstrate that the principle has much broader, super-theoretic significance: to do so, we present a unified framework for understanding the principle in its various guises, applicable to both relativistic and Newtonian contexts. We thereby deepen significantly our understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Conventionalism in Early Analytic Philosophy and the Principle of Relativity.Ori Belkind - 2020 - Erkenntnis 87 (2):827-852.
    In this paper I argue that the positivist–conventionalist interpretation of the Restricted Principle of Relativity is flawed, due to the positivists’ own understanding of conventions and their origins. I claim in the paper that, to understand the conventionalist thesis, one has to diambiguate between three types of convention; the linguistic conventions stemming from the fundamental role of mathematical axioms, the conventions stemming from the coordination betweeh theoretical statements and physical, observable facts or entities, and conventions that are made possible by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Would two dimensions be world enough for spacetime?Samuel C. Fletcher, J. B. Manchak, Mike D. Schneider & James Owen Weatherall - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:100-113.
    We consider various curious features of general relativity, and relativistic field theory, in two spacetime dimensions. In particular, we discuss: the vanishing of the Einstein tensor; the failure of an initial-value formulation for vacuum spacetimes; the status of singularity theorems; the non-existence of a Newtonian limit; the status of the cosmological constant; and the character of matter fields, including perfect fluids and electromagnetic fields. We conclude with a discussion of what constrains our understanding of physics in different dimensions.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Are Newtonian Gravitation and Geometrized Newtonian Gravitation Theoretically Equivalent?James Owen Weatherall - 2016 - Erkenntnis 81 (5):1073-1091.
    I argue that a criterion of theoretical equivalence due to Glymour :227–251, 1977) does not capture an important sense in which two theories may be equivalent. I then motivate and state an alternative criterion that does capture the sense of equivalence I have in mind. The principal claim of the paper is that relative to this second criterion, the answer to the question posed in the title is “yes”, at least on one natural understanding of Newtonian gravitation.
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Space–time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:73-92.
    What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920s-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is _algebraic_ in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Why Reichenbach wasn't entirely wrong, and Poincaré was almost right, about geometric conventionalism.Patrick M. Duerr & Yemima Ben-Menahem - 2022 - Studies in History and Philosophy of Science Part A 96 (C):154-173.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Gravitational Energy in Newtonian Theories.Neil Dewar & James Owen Weatherall - 2018 - Foundations of Physics 48 (5):558-578.
    There are well-known problems associated with the idea of gravitational energy in general relativity. We offer a new perspective on those problems by comparison with Newtonian gravitation, and particularly geometrized Newtonian gravitation. We show that there is a natural candidate for the energy density of a Newtonian gravitational field. But we observe that this quantity is gauge dependent, and that it cannot be defined in the geometrized theory without introducing further structure. We then address a potential response by showing that (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations