Switch to: References

Add citations

You must login to add citations.
  1. The relevance logic of Boolean groups.Yale Weiss - 2023 - Logic Journal of the IGPL 31 (1):96-114.
    In this article, I consider the positive logic of Boolean groups (i.e. Abelian groups where every non-identity element has order 2), where these are taken as frames for an operational semantics à la Urquhart. I call this logic BG. It is shown that the logic over the smallest nontrivial Boolean group, taken as a frame, is identical to the positive fragment of a quasi-relevance logic that was developed by Robles and Méndez (an extension of this result where negation is included (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Reinterpretation of the Semilattice Semantics with Applications.Yale Weiss - 2021 - Logica Universalis 15 (2):171-191.
    In the early 1970s, Alasdair Urquhart proposed a semilattice semantics for relevance logic which he provided with an influential informational interpretation. In this article, I propose a BHK-inspired reinterpretation of the semantics which is related to Kit Fine’s truthmaker semantics. I discuss and compare Urquhart’s and Fine’s semantics and show how simple modifications of Urquhart’s semantics can be used to characterize both full propositional intuitionistic logic and Jankov’s logic. I then present (quasi-)relevant companions for both of these systems. Finally, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Semantics for Pure Theories of Connexive Implication.Yale Weiss - 2022 - Review of Symbolic Logic 15 (3):591-606.
    In this article, I provide Urquhart-style semilattice semantics for three connexive logics in an implication-negation language (I call these “pure theories of connexive implication”). The systems semantically characterized include the implication-negation fragment of a connexive logic of Wansing, a relevant connexive logic recently developed proof-theoretically by Francez, and an intermediate system that is novel to this article. Simple proofs of soundness and completeness are given and the semantics is used to establish various facts about the systems (e.g., that two of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Characteristic Frame for Positive Intuitionistic and Relevance Logic.Yale Weiss - 2020 - Studia Logica 109 (4):687-699.
    I show that the lattice of the positive integers ordered by division is characteristic for Urquhart’s positive semilattice relevance logic; that is, a formula is valid in positive semilattice relevance logic if and only if it is valid in all models over the positive integers ordered by division. I show that the same frame is characteristic for positive intuitionistic logic, where the class of models over it is restricted to those satisfying a heredity condition. The results of this article highlight (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Conservative Negation Extension of Positive Semilattice Logic Without the Finite Model Property.Yale Weiss - 2020 - Studia Logica 109 (1):125-136.
    In this article, I present a semantically natural conservative extension of Urquhart’s positive semilattice logic with a sort of constructive negation. A subscripted sequent calculus is given for this logic and proofs of its soundness and completeness are sketched. It is shown that the logic lacks the finite model property. I discuss certain questions Urquhart has raised concerning the decision problem for the positive semilattice logic in the context of this logic and pose some problems for further research.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is a Relevant Connective?Shawn Standefer - 2022 - Journal of Philosophical Logic 51 (4):919-950.
    There appears to be few, if any, limits on what sorts of logical connectives can be added to a given logic. One source of potential limitations is the motivating ideology associated with a logic. While extraneous to the logic, the motivating ideology is often important for the development of formal and philosophical work on that logic, as is the case with intuitionistic logic. One family of logics for which the philosophical ideology is important is the family of relevant logics. In (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations