Switch to: References

Add citations

You must login to add citations.
  1. When cardinals determine the power set: inner models and Härtig quantifier logic.Jouko Väänänen & Philip D. Welch - forthcoming - Mathematical Logic Quarterly.
    We show that the predicate “x is the power set of y” is ‐definable, if V = L[E] is an extender model constructed from a coherent sequences of extenders, provided that there is no inner model with a Woodin cardinal. Here is a predicate true of just the infinite cardinals. From this we conclude: the validities of second order logic are reducible to, the set of validities of the Härtig quantifier logic. Further we show that if no L[E] model has (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Structural Properties of the Stable Core.Sy-David Friedman, Victoria Gitman & Sandra Müller - 2023 - Journal of Symbolic Logic 88 (3):889-918.
    The stable core, an inner model of the form $\langle L[S],\in, S\rangle $ for a simply definable predicate S, was introduced by the first author in [8], where he showed that V is a class forcing extension of its stable core. We study the structural properties of the stable core and its interactions with large cardinals. We show that the $\operatorname {GCH} $ can fail at all regular cardinals in the stable core, that the stable core can have a discrete (...)
    Download  
     
    Export citation  
     
    Bookmark