Switch to: References

Citations of:

On building reliable pictures with unreliable data: An evolutionary and developmental coda for the new systems biology

In Fred C. Boogerd, Frank J. Bruggeman, Jan-Hendrik S. Hofmeyr & Hans V. Westerhoff (eds.), Systems Biology: Philosophical Foundations. Boston: Elsevier. pp. 103--20 (2007)

Add citations

You must login to add citations.
  1. Robustness, Reliability, and Overdetermination (1981).William C. Wimsatt - 2012 - In Lena Soler (ed.), Characterizing the robustness of science: after the practice turn in philosophy of science. New York: Springer Verlag. pp. 61-78.
    The use of multiple means of determination to “triangulate” on the existence and character of a common phenomenon, object, or result has had a long tradition in science but has seldom been a matter of primary focus. As with many traditions, it is traceable to Aristotle, who valued having multiple explanations of a phenomenon, and it may also be involved in his distinction between special objects of sense and common sensibles. It is implicit though not emphasized in the distinction between (...)
    Download  
     
    Export citation  
     
    Bookmark   151 citations  
  • Coupling simulation and experiment: The bimodal strategy in integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4a):572-584.
    The importation of computational methods into biology is generating novel methodological strategies for managing complexity which philosophers are only just starting to explore and elaborate. This paper aims to enrich our understanding of methodology in integrative systems biology, which is developing novel epistemic and cognitive strategies for managing complex problem-solving tasks. We illustrate this through developing a case study of a bimodal researcher from our ethnographic investigation of two systems biology research labs. The researcher constructed models of metabolic and cell-signaling (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Conceptual Change in Biology: Scientific and Philosophical Perspectives on Evolution and Development.Alan C. Love (ed.) - 2014 - Berlin: Springer Verlag, Boston Studies in the Philosophy of Science.
    This volume explores questions about conceptual change from both scientific and philosophical viewpoints by analyzing the recent history of evolutionary developmental biology. It features revised papers that originated from the workshop "Conceptual Change in Biological Science: Evolutionary Developmental Biology, 1981-2011" held at the Max Planck Institute for the History of Science in Berlin in July 2010. The Preface has been written by Ron Amundson. In these papers, philosophers and biologists compare and contrast key concepts in evolutionary developmental biology and their (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Data Interpretation in the Digital Age.Sabina Leonelli - 2014 - Perspectives on Science 22 (3):397-417.
    Scientific knowledge production is currently affected by the dissemination of data on an unprecedented scale. Technologies for the automated production and sharing of vast amounts of data have changed the way in which data are handled and interpreted in several scientific domains, most notably molecular biology and biomedicine. In these fields, the activity of data gathering has become increasingly technology-driven, with machines such as next generation genome sequencers and mass spectrometers generating billions of data points within hours, and with little (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Evo-Devo as a Trading Zone.Rasmus Grønfeldt Winther - 2014 - In Alan C. Love (ed.), Conceptual Change in Biology: Scientific and Philosophical Perspectives on Evolution and Development. Berlin: Springer Verlag, Boston Studies in the Philosophy of Science.
    Evo-Devo exhibits a plurality of scientific “cultures” of practice and theory. When are the cultures acting—individually or collectively—in ways that actually move research forward, empirically, theoretically, and ethically? When do they become imperialistic, in the sense of excluding and subordinating other cultures? This chapter identifies six cultures – three /styles/ (mathematical modeling, mechanism, and history) and three /paradigms/ (adaptationism, structuralism, and cladism). The key assumptions standing behind, under, or within each of these cultures are explored. Characterizing the internal structure of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Commentary: Reengineering the Darwinian Sciences in Social Context.William C. Wimsatt - 2006 - Biological Theory 1 (4):338-341.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reengineering the Darwinian Sciences in Social Context.William C. Wimsatt - 2006 - Biological Theory 1 (4):341-342.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can an Engineer Fix an Immune System?–Rethinking theoretical biology.Claudio Mattiussi - 2013 - Acta Biotheoretica 61 (2):223-258.
    In an instant classic paper ; 2002: 179–182) biologist Yuri Lazebnik deplores the poor effectiveness of the approach adopted by biologists to understand and “fix” biological systems. Lazebnik suggests that to remedy this state of things biologist should take inspiration from the approach used by engineers to design, understand, and troubleshoot technological systems. In the present paper I substantiate Lazebnik’s analysis by concretely showing how to apply the engineering approach to biological problems. I use an actual example of electronic circuit (...)
    Download  
     
    Export citation  
     
    Bookmark