Switch to: References

Add citations

You must login to add citations.
  1. A Gentzen Calculus for Nothing but the Truth.Stefan Wintein & Reinhard Muskens - 2016 - Journal of Philosophical Logic 45 (4):451-465.
    In their paper Nothing but the Truth Andreas Pietz and Umberto Rivieccio present Exactly True Logic, an interesting variation upon the four-valued logic for first-degree entailment FDE that was given by Belnap and Dunn in the 1970s. Pietz & Rivieccio provide this logic with a Hilbert-style axiomatisation and write that finding a nice sequent calculus for the logic will presumably not be easy. But a sequent calculus can be given and in this paper we will show that a calculus for (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • From Bi-facial Truth to Bi-facial Proofs.Stefan Wintein & Reinhard A. Muskens - 2015 - Studia Logica 103 (3):545-558.
    In their recent paper Bi-facial truth: a case for generalized truth values Zaitsev and Shramko [7] distinguish between an ontological and an epistemic interpretation of classical truth values. By taking the Cartesian product of the two disjoint sets of values thus obtained, they arrive at four generalized truth values and consider two “semi-classical negations” on them. The resulting semantics is used to define three novel logics which are closely related to Belnap’s well-known four valued logic. A syntactic characterization of these (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Analytic Tableaux for all of SIXTEEN 3.Stefan Wintein & Reinhard Muskens - 2015 - Journal of Philosophical Logic 44 (5):473-487.
    In this paper we give an analytic tableau calculus P L 1 6 for a functionally complete extension of Shramko and Wansing’s logic. The calculus is based on signed formulas and a single set of tableau rules is involved in axiomatising each of the four entailment relations ⊧ t, ⊧ f, ⊧ i, and ⊧ under consideration—the differences only residing in initial assignments of signs to formulas. Proving that two sets of formulas are in one of the first three entailment (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations