Switch to: References

Add citations

You must login to add citations.
  1. What to make of Mendeleev’s predictions?K. Brad Wray - 2018 - Foundations of Chemistry 21 (2):139-143.
    I critically examine Stewart’s suggestion that we should weigh the various predictions Mendeleev made differently. I argue that in his effort to justify discounting the weight of some of Mendeleev’s failures, Stewart invokes a principle that will, in turn, reduce the weight of some of the successful predictions Mendeleev made. So Stewart’s strategy will not necessarily lead to a net gain in Mendeleev’s favor.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Limb Limps. [REVIEW]Thomas Vogt - 2018 - Hyle 24:105-107.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Revolutions in science, revolutions in chemistry.Jeffrey I. Seeman - 2023 - Foundations of Chemistry 25 (2):321-335.
    Despite decades of research and thought on the meaning and identification of revolutions in science, there is no generally accepted definition for this concept. This paper presents 13 different characteristics that have been used by philosophers and historians of science to characterize revolutions in science, in general, and in chemistry, in particular. These 13 characteristics were clustered into six independent factors. Suggestions are provided as to the use of these characteristics and factors to evaluate historical events as to their possible (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Atomic number and isotopy before nuclear structure: multiple standards and evolving collaboration of chemistry and physics.Jordi Cat & Nicholas W. Best - 2022 - Foundations of Chemistry 25 (1):67-99.
    We provide a detailed history of the concepts of atomic number and isotopy before the discovery of protons and neutrons that draws attention to the role of evolving interplays of multiple aims and criteria in chemical and physical research. Focusing on research by Frederick Soddy and Ernest Rutherford, we show that, in the context of differentiating disciplinary projects, the adoption of a complex and shifting concept of elemental identity and the ordering role of the periodic table led to a relatively (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What happened when chemists came to classify elements by their atomic number?K. Brad Wray - 2022 - Foundations of Chemistry 24 (2):161-170.
    I respond to Scerri’s recent reply to my claim that there was a scientific revolution in chemistry in the early twentieth Century. I grant, as Scerri insists, that there are significant continuities through the change about which we are arguing. That is so in all scientific revolutions. But I argue that the changes were such that they constitute a Kuhnian revolution, not in the classic sense of The Structure of Scientific Revolutions, but in the sense of Kuhn’s mature theory, developed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Getting to Know the World Scientifically: An Objective View.Paul Needham - 2020 - Cham, Schweiz: Springer.
    This undergraduate textbook introduces some fundamental issues in philosophy of science for students of philosophy and science students. The book is divided into two parts. Part 1 deals with knowledge and values. Chap. 1 presents the classical conception of knowledge as initiated by the ancient Greeks and elaborated during the development of science, introducing the central concepts of truth, belief and justification. Aspects of the quest for objectivity are taken up in the following two chapters. Moral issues are broached in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The value of vague ideas in the development of the periodic system of chemical elements.Vogt Thomas - 2021 - Synthese 199 (3-4):10587-10614.
    The exploration of chemical periodicity over the past 250 years led to the development of the Periodic System of Elements and demonstrates the value of vague ideas that ignored early scientific anomalies and instead allowed for extended periods of normal science where new methodologies and concepts are developed. The basic chemical element provides this exploration with direction and explanation and has shown to be a central and historically adaptable concept for a theory of matter far from the reductionist frontier. This (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Chemical Natural Kinds.Eric R. Scerri - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (3):427-445.
    A critique of LaPorte's views on chemical kinds, like jade and ruby, is presented. More positively, a new slant is provided on the question of whether elements are natural kinds. This is carried out by appeal to the dual nature of elements, a topic that has been debated in the philosophy of chemistry but not in the natural kinds literature. It is claimed that the abstract notion of elements, as opposed to their being simple substances, is relevant to the Kripke–Putnam (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reporting the discovery of new chemical elements: working in different worlds, only 25 years apart.K. Brad Wray & Line Edslev Andersen - 2019 - Foundations of Chemistry 22 (2):137-146.
    In his account of scientific revolutions, Thomas Kuhn suggests that after a revolutionary change of theory, it is as if scientists are working in a different world. In this paper, we aim to show that the notion of world change is insightful. We contrast the reporting of the discovery of neon in 1898 with the discovery of hafnium in 1923. The one discovery was made when elements were identified by their atomic weight; the other discovery was made after scientists came (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation