Switch to: References

Add citations

You must login to add citations.
  1. Bounding computably enumerable degrees in the Ershov hierarchy.Angsheng Li, Guohua Wu & Yue Yang - 2006 - Annals of Pure and Applied Logic 141 (1):79-88.
    Lachlan observed that any nonzero d.c.e. degree bounds a nonzero c.e. degree. In this paper, we study the c.e. predecessors of d.c.e. degrees, and prove that given a nonzero d.c.e. degree , there is a c.e. degree below and a high d.c.e. degree such that bounds all the c.e. degrees below . This result gives a unified approach to some seemingly unrelated results. In particular, it has the following two known theorems as corollaries: there is a low c.e. degree isolating (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • 2003 Annual Meeting of the Association for Symbolic Logic.Andreas Blass - 2004 - Bulletin of Symbolic Logic 10 (1):120-145.
    Download  
     
    Export citation  
     
    Bookmark  
  • Complementing cappable degrees in the difference hierarchy.Rod Downey, Angsheng Li & Guohua Wu - 2004 - Annals of Pure and Applied Logic 125 (1-3):101-118.
    We prove that for any computably enumerable degree c, if it is cappable in the computably enumerable degrees, then there is a d.c.e. degree d such that c d = 0′ and c ∩ d = 0. Consequently, a computably enumerable degree is cappable if and only if it can be complemented by a nonzero d.c.e. degree. This gives a new characterization of the cappable degrees.
    Download  
     
    Export citation  
     
    Bookmark  
  • Almost universal cupping and diamond embeddings.Jiang Liu & Guohua Wu - 2012 - Annals of Pure and Applied Logic 163 (6):717-729.
    Download  
     
    Export citation  
     
    Bookmark