Switch to: References

Add citations

You must login to add citations.
  1. Q1-degrees of c.e. sets.R. Sh Omanadze & Irakli O. Chitaia - 2012 - Archive for Mathematical Logic 51 (5-6):503-515.
    We show that the Q-degree of a hyperhypersimple set includes an infinite collection of Q1-degrees linearly ordered under \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\leq_{Q_1}}$$\end{document} with order type of the integers and consisting entirely of hyperhypersimple sets. Also, we prove that the c.e. Q1-degrees are not an upper semilattice. The main result of this paper is that the Q1-degree of a hemimaximal set contains only one c.e. 1-degree. Analogous results are valid for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Upper bounds on ideals in the computably enumerable Turing degrees.George Barmpalias & André Nies - 2011 - Annals of Pure and Applied Logic 162 (6):465-473.
    We study ideals in the computably enumerable Turing degrees, and their upper bounds. Every proper ideal in the c.e. Turing degrees has an incomplete upper bound. It follows that there is no prime ideal in the c.e. Turing degrees. This answers a question of Calhoun [2]. Every proper ideal in the c.e. Turing degrees has a low2 upper bound. Furthermore, the partial order of ideals under inclusion is dense.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Classes bounded by incomplete sets.Kejia Ho & Frank Stephan - 2002 - Annals of Pure and Applied Logic 116 (1-3):273-295.
    We study connections between strong reducibilities and properties of computably enumerable sets such as simplicity. We say that a class of computably enumerable sets bounded iff there is an m-incomplete computably enumerable set A such that every set in is m-reducible to A. For example, we show that the class of effectively simple sets is bounded; but the class of maximal sets is not. Furthermore, the class of computably enumerable sets Turing reducible to a computably enumerable set B is bounded (...)
    Download  
     
    Export citation  
     
    Bookmark