Switch to: References

Add citations

You must login to add citations.
  1. Combinator logics.Lou Goble - 2004 - Studia Logica 76 (1):17 - 66.
    Combinator logics are a broad family of substructual logics that are formed by extending the basic relevant logic B with axioms that correspond closely to the reduction rules of proper combinators in combinatory logic. In the Routley-Meyer relational semantics for relevant logic each such combinator logic is characterized by the class of frames that meet a first-order condition that also directly corresponds to the same combinator's reduction rule. A second family of logics is also introduced that extends B with the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Combinatory Logic and the Semantics of Substructural Logics.Lou Goble - 2007 - Studia Logica 85 (2):171-197.
    The results of this paper extend some of the intimate relations that are known to obtain between combinatory logic and certain substructural logics to establish a general characterization theorem that applies to a very broad family of such logics. In particular, I demonstrate that, for every combinator X, if LX is the logic that results by adding the set of types assigned to X (in an appropriate type assignment system, TAS) as axioms to the basic positive relevant logic B∘T, then (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cut-Elimination in the Strict Intersection Type Assignment System is Strongly Normalizing.Steffen van Bakel - 2004 - Notre Dame Journal of Formal Logic 45 (1):35-63.
    This paper defines reduction on derivations (cut-elimination) in the Strict Intersection Type Assignment System of an earlier paper and shows a strong normalization result for this reduction. Using this result, new proofs are given for the approximation theorem and the characterization of normalizability of terms using intersection types.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Introduction.Greg Ray - 1999 - Topoi 18 (2):87-92.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ternary relations and relevant semantics.Robert K. Meyer - 2004 - Annals of Pure and Applied Logic 127 (1-3):195-217.
    Modus ponens provides the central theme. There are laws, of the form A→C. A logic L collects such laws. Any datum A provides input to the laws of L. The central ternary relation R relates theories L,T and U, where U consists of all of the outputs C got by applying modus ponens to major premises from L and minor premises from T. Underlying this relation is a modus ponens product operation on theories L and T, whence RLTU iff LTU. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations