Switch to: References

Add citations

You must login to add citations.
  1. On cardinal characteristics of Yorioka ideals.Miguel A. Cardona & Diego A. Mejía - 2019 - Mathematical Logic Quarterly 65 (2):170-199.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Many different uniformity numbers of Yorioka ideals.Lukas Daniel Klausner & Diego Alejandro Mejía - 2022 - Archive for Mathematical Logic 61 (5):653-683.
    Using a countable support product of creature forcing posets, we show that consistently, for uncountably many different functions the associated Yorioka ideals’ uniformity numbers can be pairwise different. In addition we show that, in the same forcing extension, for two other types of simple cardinal characteristics parametrised by reals, for uncountably many parameters the corresponding cardinals are pairwise different.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Many different covering numbers of Yorioka’s ideals.Noboru Osuga & Shizuo Kamo - 2014 - Archive for Mathematical Logic 53 (1-2):43-56.
    For ${b \in {^{\omega}}{\omega}}$ , let ${\mathfrak{c}^{\exists}_{b, 1}}$ be the minimal number of functions (or slaloms with width 1) to catch every functions below b in infinitely many positions. In this paper, by using the technique of forcing, we construct a generic model in which there are many coefficients ${\mathfrak{c}^{\exists}_{{b_\alpha}, 1}}$ with pairwise different values. In particular, under the assumption that a weakly inaccessible cardinal exists, we can construct a generic model in which there are continuum many coefficients ${\mathfrak{c}^{\exists}_{{b_\alpha}, 1}}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The covering number of the strong measure zero ideal can be above almost everything else.Miguel A. Cardona, Diego A. Mejía & Ismael E. Rivera-Madrid - 2022 - Archive for Mathematical Logic 61 (5):599-610.
    We show that certain type of tree forcings, including Sacks forcing, increases the covering of the strong measure zero ideal \. As a consequence, in Sacks model, such covering number is equal to the size of the continuum, which indicates that this covering number is consistently larger than any other classical cardinal invariant of the continuum. Even more, Sacks forcing can be used to force that \<\mathrm {cov}<\mathrm {cof}\), which is the first consistency result where more than two cardinal invariants (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Filter-linkedness and its effect on preservation of cardinal characteristics.Jörg Brendle, Miguel A. Cardona & Diego A. Mejía - 2021 - Annals of Pure and Applied Logic 172 (1):102856.
    We introduce the property “F-linked” of subsets of posets for a given free filter F on the natural numbers, and define the properties “μ-F-linked” and “θ-F-Knaster” for posets in a natural way. We show that θ-F-Knaster posets preserve strong types of unbounded families and of maximal almost disjoint families. Concerning iterations of such posets, we develop a general technique to construct θ-Fr-Knaster posets (where Fr is the Frechet ideal) via matrix iterations of <θ-ultrafilter-linked posets (restricted to some level of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The cardinal coefficients of the Ideal $${{\mathcal {I}}_{f}}$$.Noboru Osuga & Shizuo Kamo - 2008 - Archive for Mathematical Logic 47 (7-8):653-671.
    In 2002, Yorioka introduced the σ-ideal ${{\mathcal {I}}_f}$ for strictly increasing functions f from ω into ω to analyze the cofinality of the strong measure zero ideal. For each f, we study the cardinal coefficients (the additivity, covering number, uniformity and cofinality) of ${{\mathcal {I}}_f}$.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The covering number and the uniformity of the ideal ℐf.Noboru Osuga - 2006 - Mathematical Logic Quarterly 52 (4):351-358.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Continuum many different things: Localisation, anti-localisation and Yorioka ideals.Miguel A. Cardona, Lukas Daniel Klausner & Diego A. Mejía - 2024 - Annals of Pure and Applied Logic 175 (7):103453.
    Download  
     
    Export citation  
     
    Bookmark  
  • Strong measure zero in separable metric spaces and Polish groups.Michael Hrušák, Wolfgang Wohofsky & Ondřej Zindulka - 2016 - Archive for Mathematical Logic 55 (1-2):105-131.
    The notion of strong measure zero is studied in the context of Polish groups and general separable metric spaces. An extension of a theorem of Galvin, Mycielski and Solovay is given, whereas the theorem is shown to fail for the Baer–Specker group Zω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Z}^{\omega}}}$$\end{document}. The uniformity number of the ideal of strong measure zero subsets of a separable metric space is examined, providing solutions to several problems of Miller and Steprāns :52–59, 2006).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • More about the cofinality and the covering of the ideal of strong measure zero sets.Miguel A. Cardona & Diego A. Mejía - 2025 - Annals of Pure and Applied Logic 176 (4):103537.
    Download  
     
    Export citation  
     
    Bookmark  
  • The cofinality of the strong measure zero ideal for κ inaccessible.Johannes Philipp Schürz - 2023 - Mathematical Logic Quarterly 69 (1):31-39.
    We investigate the cofinality of the strong measure zero ideal for κ inaccessible and show that it is independent of the size of 2κ.
    Download  
     
    Export citation  
     
    Bookmark  
  • ℙmax variations related to slaloms.Teruyuki Yorioka - 2006 - Mathematical Logic Quarterly 52 (2):203-216.
    We prove the iteration lemmata, which are the key lemmata to show that extensions by Pmax variations satisfy absoluteness for Π2-statements in the structure 〈H , ∈, NSω 1, R 〉 for some set R of reals in L , for the following statements: The cofinality of the null ideal is ℵ1. There exists a good basis of the strong measure zero ideal.
    Download  
     
    Export citation  
     
    Bookmark   1 citation