Switch to: References

Add citations

You must login to add citations.
  1. Set-theoretic geology.Gunter Fuchs, Joel David Hamkins & Jonas Reitz - 2015 - Annals of Pure and Applied Logic 166 (4):464-501.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Ordinal definability in Jensen's model.Włodzimierz Zadrożny - 1984 - Journal of Symbolic Logic 49 (2):608-620.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inner mantles and iterated HOD.Jonas Reitz & Kameryn J. Williams - 2019 - Mathematical Logic Quarterly 65 (4):498-510.
    We present a class forcing notion, uniformly definable for ordinals η, which forces the ground model to be the ηth inner mantle of the extension, in which the sequence of inner mantles has length at least η. This answers a conjecture of Fuchs, Hamkins, and Reitz [1] in the positive. We also show that forces the ground model to be the ηth iterated of the extension, where the sequence of iterated s has length at least η. We conclude by showing (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generalizations of the Kunen inconsistency.Joel David Hamkins, Greg Kirmayer & Norman Lewis Perlmutter - 2012 - Annals of Pure and Applied Logic 163 (12):1872-1890.
    We present several generalizations of the well-known Kunen inconsistency that there is no nontrivial elementary embedding from the set-theoretic universe V to itself. For example, there is no elementary embedding from the universe V to a set-forcing extension V[G], or conversely from V[G] to V, or more generally from one set-forcing ground model of the universe to another, or between any two models that are eventually stationary correct, or from V to HOD, or conversely from HOD to V, or indeed (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Lifting elementary embeddings j: V λ → V λ. [REVIEW]Paul Corazza - 2007 - Archive for Mathematical Logic 46 (2):61-72.
    We describe a fairly general procedure for preserving I3 embeddings j: V λ → V λ via λ-stage reverse Easton iterated forcings. We use this method to prove that, assuming the consistency of an I3 embedding, V = HOD is consistent with the theory ZFC + WA where WA is an axiom schema in the language {∈, j} asserting a strong but not inconsistent form of “there is an elementary embedding V → V”. This improves upon an earlier result in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Iterating the Cofinality- Constructible Model.Ur Ya’Ar - 2023 - Journal of Symbolic Logic 88 (4):1682-1691.
    We investigate iterating the construction of $C^{*}$, the L-like inner model constructed using first order logic augmented with the “cofinality $\omega $ ” quantifier. We first show that $\left (C^{*}\right )^{C^{*}}=C^{*}\ne L$ is equiconsistent with $\mathrm {ZFC}$, as well as having finite strictly decreasing sequences of iterated $C^{*}$ s. We then show that in models of the form $L[U]$ we get infinite decreasing sequences of length $\omega $, and that an inner model with a measurable cardinal is required for that.
    Download  
     
    Export citation  
     
    Bookmark