Switch to: References

Citations of:

On Discrete Physics: a Perfect Deterministic Structure for Reality – and "A Direct Logical Derivation of the Fundamental Laws of Nature"

CERN Document, Geneva, Switzerland, Record:1980381, PP. 11-99; Paris-Sorbonne University Publs., CCSD/CNRS-Record:01547739, PP. 11-99 (2015)

Add citations

You must login to add citations.
  1. Reconditioning in Discrete Quantum Field Theory.Stan Gudder - 2017 - International Journal of Theoretical Physics, Springer-Verlag, USA, 122:1-14.
    AUTHOR: STAN GUDDER (John Evans Professor of Mathematical Physics, University of Denver, USA) -- -/- We consider a discrete scalar, quantum field theory based on a cubic 4-dimensional lattice. We mainly investigate a discrete scattering operator S(x0,r) where x0 and r are positive integers representing time and maximal total energy, respectively. The operator S(x0,r) is used to define transition amplitudes which are then employed to compute transition probabilities. These probabilities are conditioned on the time-energy (x0,r). In order to maintain total (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Level I Multiverse Is Not the Same as the Level III Multiverse.Alan McKenzie - 2017 - NSPIRE-HEP, High Energy Physics (HEP) Database, CERN Online Publications, EUROPE.
    Anthony Aguirre and Max Tegmark have famously speculated that the Level I Multiverse is the same as the Level III Multiverse. By this, they mean that the parallel universes of the Level III Multiverse can be regarded as similar or identical copies of our own Hubble volume distributed throughout the whole of our (possibly infinite) bubble universe. However, we show that our bubble universe is in a single quantum eigenstate that extends to regions of space that are receding from each (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some Remarks on the Mathematical Structure of the Multiverse.Alan McKenzie - 2016 - PhilSci-Archive, University of Pittsburgh, USA.
    The Copenhagen interpretation of quantum entanglement experiments is at best incomplete, since the intermediate state induced by collapse of the wave function apparently depends upon the inertial rest frame in which the experiment is observed. While Everett’s Many Worlds Interpretation avoids the issue of wave function collapse, it, too, is a casualty of the special theory of relativity. This requires all events in the universe, past, present and future, to be unique, as in the block-universe picture, which rules out Everett-style (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Discrete, Finite Multiverse.Alan McKenzie - 2016 - arXiv-Quantum Physics (Quant-Ph), Cornell University Publications, New York, USA.
    The Many Worlds Interpretation (MWI) famously avoids the issue of wave function collapse. Different MWI trees representing the same quantum events can have different topologies, depending upon the observer. However, they are all isomorphic to the group of block universes containing all of the outcomes of all of the events, and so, in that sense, the group of block universes is a more fundamental representation. Different branches of the MWI tree, representing different universes in MWI, ultimately share the same quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations