Switch to: References

Add citations

You must login to add citations.
  1. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias.Jiji Zhang - 2008 - Artificial Intelligence 172 (16-17):1873-1896.
    Causal discovery becomes especially challenging when the possibility of latent confounding and/or selection bias is not assumed away. For this task, ancestral graph models are particularly useful in that they can represent the presence of latent confounding and selection effect, without explicitly invoking unobserved variables. Based on the machinery of ancestral graphs, there is a provably sound causal discovery algorithm, known as the FCI algorithm, that allows the possibility of latent confounders and selection bias. However, the orientation rules used in (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Sound and complete causal identification with latent variables given local background knowledge.Tian-Zuo Wang, Tian Qin & Zhi-Hua Zhou - 2023 - Artificial Intelligence 322 (C):103964.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Causal Reasoning with Ancestral Graphical Models.Jiji Zhang - 2008 - Journal of Machine Learning Research 9:1437-1474.
    Causal reasoning is primarily concerned with what would happen to a system under external interventions. In particular, we are often interested in predicting the probability distribution of some random variables that would result if some other variables were forced to take certain values. One prominent approach to tackling this problem is based on causal Bayesian networks, using directed acyclic graphs as causal diagrams to relate post-intervention probabilities to pre-intervention probabilities that are estimable from observational data. However, such causal diagrams are (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations