Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Cut-rule axiomatization of the syntactic calculus NL.Wojciech Zielonka - 2000 - Journal of Logic, Language and Information 9 (3):339-352.
    An axiomatics of the product-free syntactic calculus L ofLambek has been presented whose only rule is the cut rule. It was alsoproved that there is no finite axiomatics of that kind. The proofs weresubsequently simplified. Analogous results for the nonassociativevariant NL of L were obtained by Kandulski. InLambek's original version of the calculus, sequent antecedents arerequired to be nonempty. By removing this restriction, we obtain theextensions L 0 and NL 0 ofL and NL, respectively. Later, the finiteaxiomatization problem for L (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Geach’s Categorial Grammar.Lloyd Humberstone - 2004 - Linguistics and Philosophy 28 (3):281 - 317.
    Geach’s rich paper ‘A Program for Syntax’ introduced many ideas into the arena of categorial grammar, not all of which have been given the attention they warrant in the thirty years since its first publication. Rather surprisingly, one of our findings (Section 3 below) is that the paper not only does not contain a statement of what has widely come to be known as “Geach’s Rule”, but in fact presents considerations which are inimical to the adoption of the rule in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Craig’s trick and a non-sequential system for the Lambek calculus and its fragments.Stepan Kuznetsov, Valentina Lugovaya & Anastasiia Ryzhova - 2019 - Logic Journal of the IGPL 27 (3):252-266.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Shifting Priorities: Simple Representations for Twenty-seven Iterated Theory Change Operators.Hans Rott - 2009 - In Jacek Malinowski David Makinson & Wansing Heinrich (eds.), Towards Mathematical Philosophy. Springer. pp. 269–296.
    Prioritized bases, i.e., weakly ordered sets of sentences, have been used for specifying an agent’s ‘basic’ or ‘explicit’ beliefs, or alternatively for compactly encoding an agent’s belief state without the claim that the elements of a base are in any sense basic. This paper focuses on the second interpretation and shows how a shifting of priorities in prioritized bases can be used for a simple, constructive and intuitive way of representing a large variety of methods for the change of belief (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • On the Scientific Works of Tadeusz Batog.Jerzy Pogonowski - 1997 - Poznan Studies in the Philosophy of the Sciences and the Humanities 57:69-134.
    Download  
     
    Export citation  
     
    Bookmark  
  • A simple and general method of solving the finite axiomatizability problems for Lambek's syntactic calculi.Wojciech Zielonka - 1989 - Studia Logica 48 (1):35 - 39.
    In [4], I proved that the product-free fragment L of Lambek's syntactic calculus (cf. Lambek [2]) is not finitely axiomatizable if the only rule of inference admitted is Lambek's cut-rule. The proof (which is rather complicated and roundabout) was subsequently adapted by Kandulski [1] to the non-associative variant NL of L (cf. Lambek [3]). It turns out, however, that there exists an extremely simple method of non-finite-axiomatizability proofs which works uniformly for different subsystems of L (in particular, for NL). We (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gapping as constituent coordination.Mark J. Steedman - 1990 - Linguistics and Philosophy 13 (2):207 - 263.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Cut-Rule Axiomatization of the Syntactic Calculus L0.Wojciech Zielonka - 2001 - Journal of Logic, Language and Information 10 (2):233-236.
    In Zielonka (1981a, 1989), I found an axiomatics for the product-free calculus L of Lambek whose only rule is the cut rule. Following Buszkowski (1987), we shall call such an axiomatics linear. It was proved that there is no finite axiomatics of that kind. In Lambek's original version of the calculus (cf. Lambek, 1958), sequent antecedents are non empty. By dropping this restriction, we obtain the variant L0 of L. This modification, introduced in the early 1980s (see, e.g., Buszkowski, 1985; (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Linear axiomatics of commutative product-free Lambek calculus.Wojciech Zielonka - 1990 - Studia Logica 49 (4):515 - 522.
    Axiomatics which do not employ rules of inference other than the cut rule are given for commutative product-free Lambek calculus in two variants: with and without the empty string. Unlike the former variant, the latter one turns out not to be finitely axiomatizable in that way.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Discontinuity in categorial grammar.Glyn Morrill - 1995 - Linguistics and Philosophy 18 (2):175 - 219.
    Discontinuity refers to the character of many natural language constructions wherein signs differ markedly in their prosodic and semantic forms. As such it presents interesting demands on monostratal computational formalisms which aspire to descriptive adequacy. Pied piping, in particular, is argued by Pollard (1988) to motivate phrase structure-style feature percolation. In the context of categorial grammar, Bach (1981, 1984), Moortgat (1988, 1990, 1991) and others have sought to provide categorial operators suited to discontinuity. These attempts encounter certain difficulties with respect (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations